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Abstract: There is considerable interest in ethical designs for artificial intelli-
gence (AI) that do not pose risks to humans. This paper proposes using ele-
ments of Hutter's agent-environment framework to define a decision support 
system for simulating, visualizing and analyzing AI designs to understand their 
consequences. The simulations do not have to be accurate predictions of the fu-
ture; rather they show the futures that an agent design predicts will fulfill its 
motivations and that can be explored by AI designers to find risks to humans. In 
order to safely create a simulation model this paper shows that the most prob-
able finite stochastic program to explain a finite history is finitely computable, 
and that there is an agent that makes such a computation without any unin-
tended instrumental actions. It also discusses the risks of running an AI in a 
simulated environment. 
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1 Introduction 

Some scientists expect artificial intelligence (AI) to greatly exceed human intelligence 
during the 21st century (Kurzweil, 2005). There has been concern about the possible 
harmful effect of intelligent machines on humans since at least Assimov's Laws of 
Robotics (1942). More recently there has been interest in the ethical design of AI 
(Hibbard, 2001; Bostrom, 2003; Goertzel, 2004; Yudkowsky, 2004; Hibbard, 2008; 
Omohundro, 2008; Waser 2010; Waser 2011; Muehlhauser and Helm, 2012). 

Hutter's universal AI (2005) defined an agent-environment framework for reason-
ing mathematically about AI. This paper proposes using elements of this framework 
to define a decision support system for exploring, via simulation, analysis and visuali-
zation, the consequences of possible AI designs. The claim is not that the decision 
support system would produce accurate simulations of the world and an AI agent's 
effects. Rather, in the agent-environment framework the agent makes predictions 
about the environment and chooses actions, and the decision support system uses 
these predictions and choices to explore the future that the AI agent predicts will op-
timize its motivation. 

This is related to the oracle AI approach of Armstrong, Sandberg and Bostrom 
(forthcoming), in that both approaches use an AI whose only actions are to provide 
information to humans. The oracle AI is a general question answerer, whereas the 
decision support approach focuses on specific capabilities from the mathematical 



 

 

agent-environment framework. The oracle AI is described as a general AI with re-
stricted ability to act on its environment. The decision support system applies part of 
the agent-environment framework to learn a model for the environment, and then uses 
that model to create a simulated environment for evaluating an AI agent defined using 
the framework. Chalmers (2010) considers the problem of restricting an AI to a simu-
lation and concludes that it is inevitable that information will flow in both directions 
between the real and simulated worlds. The oracle AI paper and Chalmers' paper both 
consider various approaches to preventing an AI from breaking out of its restriction to 
not act in the real world, including physical limits and conditions on the AI's motiva-
tion. In this paper, a proposed AI design being evaluated in the decision support sys-
tem has a utility function defined in terms of its simulated environment, has no moti-
vation past the end of its simulation and the simulation is not visualized or analyzed 
until the simulation is compete. 

The next section presents the mathematical framework for reasoning about AI 
agents. The third section discusses sources of AI risk. The fourth section discusses the 
proposed decision support system. The final section is a summary of the proposal. 

2 An Agent-Environment Framework 

We assume that an agent interacts with an environment. At each of a discrete series of 
time steps t ∈ N = {0, 1, 2, ...} the agent sends an action at ∈ A to the environment 
and receives an observation ot ∈ O from the environment, where A and O are finite 
sets. We assume that the environment is computable and we model it by programs q 
∈ Q, where Q is some set of programs. Let h = (a1, o1, ..., at, ot) ∈ H be an interaction 
history where H is the set of all finite histories, and define |h| = t as the length of the 
history h. Given a program q ∈ Q we write o(h) = U(q, a(h)), where o(h) = (o1, ..., ot) 
and a(h) = (a1, ..., at), to mean that q produces the observations oi in response to the 
actions ai for 1 ≤ i ≤ t (U is a program interpreter). Given a program q the probability 
ρ(q) : Q → [0, 1] is the agent's prior belief that q is a true model of the environment. 
The prior probability of history h, denoted ρ(h), is computed from ρ(q) (two ways of 
doing this are presented later in this section). 

An agent is motivated according to a utility function u : H → [0, 1] which assigns 
utilities between 0 and 1 to histories. Future utilities are discounted according to a 
geometric temporal discount 0 ≤ γ < 1 (Sutton and Barto, 1998). The value v(h) of a 
possible future history h is defined recursively by: 
 
 v(h) = u(h) + γ max a∈A v(ha) (1) 
 v(ha) = ∑o∈O ρ(o | ha) v(hao) (2) 
 
Then the agent π is defined to take, after history h, the action: 

 
 π(h) := a|h|+1 = argmax a∈A v(ha) (3) 

 



 

For Hutter's universal AI (2005), Q is the set of programs for a deterministic prefix 
universal Turing machine (PUTM) U (Li and Vitanyi, 1997).  The environment may 
be non-deterministic in which case it is modeled by a distribution of deterministic 
programs. The prior probability ρ(q) of program q is 2-|q| where |q| is the length of q in 
bits, and the prior probability of history h is given by: 
 
 ρ(h) = ∑q:o(h)=U(q, a(h)) ρ(q) (4) 
 
Hutter's universal AI is a reinforcement-learning agent, meaning that the observation 
includes a reward rt (i.e., ot = (ôt , rt)) and u(h) = r|h|. Hutter showed that his universal 
AI maximizes the expected value of future history, but it is not finitely computable. 

As Hutter discussed (2009a; 2009b), for real world agents single finite stochastic 
programs (limited to finite memory, for which the halting problem is decidable) such 
as Markov decision processes (MDPs) (Puterman, 1994; Sutton and Barto, 1998) and 
dynamic Bayesian networks (DBNs) (Ghahramani 1997) are more practical than dis-
tributions of PUTM programs for defining environment models. Modeling an envi-
ronment with a single stochastic program rather than a distribution of deterministic 
PUTM programs requires a change to the way that ρ(h) is computed in (4). Let Q be 
the set of all programs (these are bit strings in some language for defining MDPs, 
DBNs or some other finite stochastic programming model), let ρ(q) = 4-|q| be the prior 
probability of program q where |q| is the length of q in bits (4-|q| to ensure that ∑q∈Q 
ρ(q) ≤ 1 since program strings in Q are not prefix-free), and let P(h | q) be the prob-
ability that q computes the history h1. Note ρ(q) is a discrete distribution on individual 
program strings, not a measure on bit strings in the sense of page 243 of (Li and 
Vitanyi, 1997). Then given a history h0, the environment model is the single program 
that provides the most probable explanation of h0, that is the q that maximizes P(q | 
h0). By Bayes theorem: 
 
 P(q | h0) = P(h0 | q) ρ(q) / P(h0) (5) 
 
P(h0) is constant over all q so can be eliminated. Thus we define λ(h0) as the most 
probable program modeling h0 by: 

 
 λ(h0) := argmax q∈Q P(h0 | q) ρ(q) (6) 
 

The following result is proved in (Hibbard, 2012b). 
Proposition 1. Given a finite history h0 the model λ(h0) can be finitely computed. 
                                                            

1 P(h | q) is the probability that q produces the observations oi in response to the actions ai for 1 
≤ i ≤ |h|. For example let A = {a, b}, O = {0, 1}, h = (a, 1, a, 0, b, 1) and let q generate ob-
servation 0 with probability 0.2 and observation 1 with probability 0.8, without any internal 
state or dependence on the agent's actions. Then the probability that the interaction history h 
is generated by program q is the product of the probabilities of the 3 observations in h: P(h | 
q) = 0.8 × 0.2 × 0.8 = 0.128. If the probabilities of observations generated by q depended on 
internal state or the agent's actions, then those would have to be taken into account. 



 

 

Given an environment model q0 = λ(h0) the following can be used for the prior 
probability of an observation history h in place of (4): 
 
 ρ(h) = P(h | q0) (7) 
 

According to current physics our universe is finite (Lloyd, 2002) and for finite en-
vironments agents based on (6) and (7) are as optimal as those based on (4). And their 
prior probabilities better express algorithmic complexity if finite stochastic programs 
are expressed in an ordinary procedural programming language restricted to have only 
static array declarations, to have no recursive function definitions, and to include a 
source of truly random numbers. 

3 Sources of AI Risk 

Dewey (2011) argued that reinforcement-learning agents will modify their environ-
ments so that they can maximize their utility functions without accomplishing the 
intentions of human designers. He discussed ways to avoid this problem with utility 
functions not conforming to the reinforcement-learning definition. Ring and Orseau 
(2011) argued that reinforcement-learning agents will self-delude, meaning they will 
choose to alter their own observations of their environment to maximize their utility 
function regardless of the actual state of the environment. In (Hibbard, 2012a) I dem-
onstrated by examples that agents with utility functions defined in terms of agents' 
environment models can avoid self-delusion, and also proved that under certain as-
sumptions agents will not choose to self-modify. 

Omohundro (2008) and Bostrom (forthcoming) describe how any of a broad range 
of primary AI motivations will imply secondary, unintended motivations for the AI to 
preserve its own existence, to eliminate threats to itself and its utility function, and to 
increase its own efficiency and computing resources. Bostrom discusses the example 
of an AI whose primary motive is to compute pi and may destroy the human species 
due to implied instrumental motivations (e.g., to eliminate threats and to increase its 
own computing resources). Omohundro uses the term "basic AI drives" and Bostrom 
uses "instrumental goals" but as I argue in (Hibbard, 2012b) they should really be 
called "unintended instrumental actions" since the agent's whole motivation is defined 
by its utility function. 

4 A Decision Support System 

The decision support system is intended to avoid the dangers of AI by having no mo-
tivation and no actions on the environment, other than reporting the results of its 
computations to the environment. However, the system runs AI agents in a simulated 
environment, so it must be designed to avoid subtle unintended instrumental actions. 

The first stage of the system is an agent, here called π6, that learns a model of the 
real world environment in order to provide a simulated environment for studying 



 

proposed AI agents. An AI agent is defined by (1)-(3), (6) and (7), but (6) can be used 
alone to define the agent π6 that learns a model λ(h0) from history h0. In order for π6 to 
learn an accurate model of the environment the interaction history h0 should include 
agent actions, but for safety π6 cannot be allowed to act. The resolution is for its ac-
tions to be made by many safe, human-level surrogate AI agents independent of π6 
and of each other. Actions of the surrogates include natural language and visual 
communication with each human. The agent π6 observes humans, their interactions 
with the surrogates and physical objects in an interaction history h0 for a time period 
set by π6's designers, and then reports an environment model to the environment (spe-
cifically to the decision support system, which is part of the agent's environment). The 
following result is proved in (Hibbard, 2012b). While it may seem obvious, given the 
subtlety of unintended behaviors it is worth proving. 

Proposition 2. The agent π6 will report the model λ(h0) to the environment accu-
rately and will not make any other, unintended instrumental actions. 

The decision support system analyzes proposed AI agents that observe and act in a 
simulated environment inside the decision support system. To formalize the simulated 
environment define O' and A' as models of O and A with bijections mO : O ↔ O' and 
mA : A ↔ A'. Define H' as the set of histories of interactions via O' and A', with a bi-
jection mH : H ↔ H' computed by applying mO and mA individually to the observa-
tions and actions in a history. Given hp as the history observed by π6 up to time |hp| = 
present, define h'p = mH(hp) as the history up to the present in the simulated environ-
ment. Let Q' be a set of finite stochastic programs for the simulated environment and 
π'6 be a version of the environment-learning agent π6 for the simulated environment. It 
produces: 

 
 q'p = λ(h'p) := argmax q'∈Q' P(h'p | q') ρ(q') (8) 
 ρ'(h') = P(h' | q'p) (9) 

 
Now let π'(h'; ρ', u', γ') be a proposed AI agent to be studied using the decision 

support system, where u' is its utility function, γ' is its temporal discount and future is 
the end time of the simulation. The utility function u' is constrained to have no moti-
vation after time = future: 

 
 ∀h' ∈ H'. |h'| > future ⇒ u'(h') = 0 (10) 

 
Then π'(h'; ρ', u', γ') is defined by: 
 
 v'(h') = u'(h') + γ' max a'∈A' v'(h'a') (11) 
 v'(h'a') = ∑o'∈O' ρ'(o' | h'a') v'(h'a'o') (12) 
 π'(h'; ρ', u', γ') := a'|h'|+1 = argmax a'∈A' v'(h'a') (13) 

 
There are no humans or physical objects in the simulated environment; rather the 

agent π' (using π' and π'(h') as abbreviations for π'(h'; ρ', u', γ')) interacts with a simu-
lation model of humans and physical objects via: 



 

 

 
 a'|h'|+1 = π'(h') (14) 
 o'|h'|+1 = o' ∈ O' with probability ρ'(o' | h'a'|h'|+1) (15) 

 
The decision support system propagates from h'p to h'f, where |h'f| = future, by re-

peatedly applying (14) and (15). As in (Hibbard, 2012a) let Z' be the set of finite his-
tories of the internal states of λ(h'p) and let P(z' | h', λ(h'p)) be the probability that 
λ(h'p) computes z' ∈ Z' given h' ∈ H'. The decision support system then computes a 
history of model states by: 

 
 z'f = z' ∈ Z' with probability P(z' | h'f, λ(h'p)) (16) 

 
The simulation in (14)-(16) is stochastic so the decision support system will sup-

port ensembles of multiple simulations to provide users with a sample of possible 
futures. An ensemble of simulations generates an ensemble of histories of model 
states {z'f,e | 1 ≤ e ≤ m}, all terminating at time = future. These simulations should be 
completed before they are visualized and analyzed; that is visualization and analysis 
should not be concurrent with simulation for reasons discussed in Section 4.1. 

The history hp includes observations by π6 of humans and physical objects, and so 
the decision support system can use the same interface via A' and O' (as mapped by 
mA and mO) to the model λ(h'p) for observing simulated humans and physical objects 
in state history z'f,e. These interfaces can be used to produce interactive visualizations 
of z'f,e in a system that combines features of Google Earth and Vis5D (Hibbard and 
Santek, 1990), which enabled scientists to interactively explore weather simulations 
in three spatial dimensions and time. Users will be able to pan and zoom over the 
human habitat, as in Google Earth, and animate between times present and future, as 
in Vis5D. The images and sounds the system observes of the model λ(h'p) executing 
state history z'f,e can be embedded in the visualizations in the physical locations of the 
agent's observing systems, similar to the way that street views and user photographs 
are embedded in Google Earth. 

The decision support system can also match specifications for specific humans and 
physical objects to the images and sounds it observes of the model λ(h'p) executing 
state history z'f,e. The specifications may include text descriptions, images, sounds, 
animations, tables of numbers, mathematical descriptions, or virtually anything. Rec-
ognized humans and physical objects can then be represented by icons in the visuali-
zation, in their simulated physical locations and with recognized properties of humans 
and objects represented by colors and shapes of the icons. The system can enable 
users to selectively enable different layers of information in the visualizations. 

Vis5D enables users to visualize ensembles of weather forecasts in a spreadsheet of 
parallel visualizations where spatial view, time and level selections are synchronized 
between spreadsheet cells. The decision support system can provide a similar spread-
sheet visualization capability for ensembles of simulations. 

The point isn't that these simulations are accurate predictions of the future, but that 
they do depict the future that the AI agent will create, according to the environment 
model learned by π'6. The visualization depicts the future that the agent π'(h') predicts 



 

will maximize the sum of future discounted utility function values. Agent designers 
can use this visualization to understand the consequences of various proposed utility 
functions and temporal discounts. 

The visualizations will be accompanied by analyses, in which the decision support 
system computes the values of functions g(z'f,e). Evaluation of these functions may 
depend on recognizing humans and physical objects in observations of the model 
λ(h'p) executing state history z'f,e. Such analyses would enable designers to compute 
quantitative evaluations to complement visualizations. For example, these analyses 
can be used to compute statistics about future human wealth, health and intelligence. 

There will be an interval before time = future when visualizations and analyses of 
the behavior of π' will not be an accurate reflection of the behavior of a real-world 
agent without the temporal cutoff in (10). The length of this interval will depend on 
the value of the temporal discount γ'. In order to compensate for this, future should be 
chosen past the time horizon of interest. 

4.1 Will an Agent π'(h'; ρ', u', γ') Act in the Real World? 

The environment model q'p = λ(h'p) may provide an agent π' with the information that 
humans have constructed a decision support system for analyzing proposed AI agents 
and that π' is such an agent, interacting with a simulated environment. If the utility 
function u' is defined in terms of the real environment then π' may predict via ρ' that 
certain actions in the simulated environment may manipulate the human users of the 
decision support system into increasing the value of u' in the real environment. Hence 
it is important that the utility function u' be defined in terms of the simulated rather 
than the real environment. 

Even when u' is defined in terms of the simulated environment there are still possi-
ble risks. Assuming that q'p = λ(h'p) includes the information that π' is in a simulation, 
then the agent may predict via ρ' that it can bribe human users of the decision support 
system, through an offer to act on their behalf in the real world (the bribed humans 
would have to enable π' to act in the real world), to manipulate its simulated environ-
ment to increase the value of u'. This offer of a bribe could be made by spoken or 
written language inserted by actions of π' into some z'f,e and visualized by the users. 
This possibility is the rationale for constraining that u'(h') = 0 for |h'| > future in (10) 
and for requiring simulation to be complete before visualization and analysis begin. 
Looking at its definition in (11)-(13) it is hard to see any reason why π' would be 
motivated to affect events after time = future, and by the time a user sees any bribe 
offer the simulation would be complete through time = future. It is also hard to see 
any reason why π' running in one simulation would be motivated to affect another 
simulation occurring at a later time (if the simulations were running simultaneously 
then there could be some communication and interaction between them mediated by 
human users). As proved in (Hibbard, 2012a) π' will not have any motive to modify 
u', so π' will not modify itself to be motivated past time = future. However these are 
subtle issues and I do not claim they are completely resolved. 

It is important not to anthropomorphize π'. A human restricted to act in a simula-
tion would be motivated to act in the real world. But if u' is defined in terms of a 



 

 

simulation then π' would not be motivated to act in the real world, except as a means 
to increase u' in the simulation. 

The greatest risk comes from the human users of the decision support system who 
may be tempted (Hibbard, 2009) to modify it to act in the real world on their behalf. 
As Elliott (2005) comments on the safety of US nuclear weapons, "The human factor 
introduces perhaps the weakest link in nuclear weapon safety and control." However, 
if society takes AI risks seriously then it can learn from the experience managing 
nuclear weapons to manage AI and some form of the proposed decision support sys-
tem. 

5 Discussion 

An important challenge for safe AI is understanding the consequences of AI designs, 
particularly the consequences of AI utility functions. This paper proposes a decision 
support system for evaluating AI designs in safe, simulated environments that model 
our real environment. The paper shows that the agent π6 is safe and learns to model 
our environment in a finite computation. The paper also addresses some possible risks 
in running and evaluating AI designs in simulated environments. It would be useful to 
find computationally feasible implementations for the definitions in this paper. 

I believe that the greatest danger of AI comes from the fact that above-human-level 
AI is likely to be a tool in military and economic competition between humans and 
thus have motives that are competitive toward some humans. Some form of the pro-
posed decision support system may be able to alert those building powerful AI to the 
long term consequences of decisions they take in the heat of competition. 
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