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Abstract. This article describes the development of reinforcement learning 
within the Sigma graphical cognitive architecture.  Reinforcement learning has 
been deconstructed in terms of the interactions among more basic mechanisms 
and knowledge in Sigma, making it a derived capability rather than a de novo 
mechanism.  Basic reinforcement learning – both model-based and model-free 
– are demonstrated, along with the intertwining of model learning. 
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1   Introduction 

Reinforcement learning (RL) enables agents to learn effective policies for task 
performance based on rewards received over a sequence of trials [1].  It is a key 
concept in artificial general intelligence (AGI) – even being at the core of a proposal 
for a universal artificial intelligence [2] – plays an important role in intelligent 
robotics, and is increasingly important in conventional cognitive architectures [3-4].  
This article describes the simple manner in which RL can be implemented within the 
Sigma (Σ) cognitive architecture [5], with its grounding in factor graphs [6] – a 
general form of graphical model [7] – and piecewise linear functions [8]. 

The goal of this effort has not been to implement from scratch a preselected RL 
algorithm within Sigma, nor even necessarily, at least at first, to yield an RL 
capability that is competitive with today’s best, but to: (1) explore whether some 
variant of RL could emerge from how Sigma already works, and (2) analyze the 
ensuing results to see what they can tell us about both Sigma and RL.  This approach 
to RL is driven by a key desideratum that is guiding Sigma’s development towards 
general intelligence – functional elegance, which seeks to combine the broad range of 
capabilities implicit in general intelligence with simplicity and theoretical elegance.  
The ultimate aim is for something like a set of cognitive Newton’s laws that yield the 
required diversity of behavior from interactions among a small set of very general 
primitives.  AIXI [2] can be viewed as an attempt at an extreme example of functional 
elegance.   The approach in Sigma is less ambitious, but still strongly in this direction. 

This article explains how model-based RL can be engendered within Sigma from 
the interactions among: (1) a more primitive gradient-descent learning mechanism 
that is capable, among other things, of learning to predict; and (2) schematic 



knowledge that determines what predictions are to be learned, what their initial values 
should be, and how to propagate such values backwards over time.  This effectively 
deconstructs a form of model-based RL in terms of preexisting, more basic, 
capabilities already in Sigma, plus knowledge.  In contrast, no means was found 
within Sigma’s existing capabilities of producing either model-free RL or the 
intertwining of model learning with model-based RL.  However, both do become 
possible after a minimal further addition to the architecture.  This overall approach, of 
deconstructing capabilities in terms of existing architectural mechanisms when 
possible, and of minimal changes to the architecture only when necessary, directly 
supports functional elegance.  It also reflects both a form of Occam’s razor and an 
adherence to Allen Newell’s exhortation to “listen to the architecture” [9]. 

2   Reinforcement Learning (RL) 

The central concept in reinforcement learning is that of (logically) propagating 
rewards received later in performance backwards in time to assist in learning the 
expected utility of earlier actions (for use in later trials).  Ultimately the learning is 
reflected in Q values – Q(s, a) – which capture the expected (discounted) cumulative 
reward of choosing action a in state s, and which thus aid in selecting appropriate 
actions.  The particular approach taken in Sigma provides an on-policy learning 
algorithm, which learns from the action taken rather than from the best action that 
could have been taken, making it more akin to SARSA [10] than to Q-learning [11].  
The learning update in SARSA is defined as Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) 
- Q(st, at)], where α is the learning rate and γ is the discount factor for future rewards.  

Consider, for example, a one-dimensional, discrete, grid task in which the agent 
may start at any location and is to reach a goal location via left and right actions 
(Fig. 1).  With no initial information concerning which operator to choose, behavior 
begins with random choices.  However, once the goal location is reached, a reward 
will be received, and learning can begin.  Over time, and future experiences, this 
information propagates backwards across actions to yield Q values that predict higher 
discounted cumulative rewards for choosing right when the agent is to the left of 
the goal and left when it is to the right of the goal.  This example task will be used 
throughout the remainder of this article. 

 
Fig. 1: 1D grid task with example goal (4), starting location (2), and actions (left 
and right).   The two extreme locations act as buffers to avoid end effects. 



3   The Sigma Architecture 

Sigma has been under development in some form since 2008, although until now it 
lacked a name due to an ambivalence concerning whether what was being developed 
was a specific graphical architecture or a general approach, based on graphical 
models, for exploring the space of architectures.  Although there remains room to 
explore a broader range of architectures, it has become increasingly clear that a 
specific architecture was being built, which now has a proper name: Sigma.  

In general, graphical models provide an efficient means of computing with 
complex multivariate functions by decomposing them into products of simpler 
functions and then mapping them onto graphs.  From these graphs, the marginals of 
the individual variables – i.e., the function’s values when all other variables are 
summarized out – can be computed efficiently, as can the function’s global mode.  
Bayesian networks and Markov random fields are common forms of graphical 
models, and some forms of neural networks map directly onto them.  Factor graphs 
are a variant of graphical models that map decompositions of arbitrary multivariate 
functions onto undirected bipartite graphs of variable and factor nodes.  Variables 
map onto variable nodes while decomposed factors map onto factor nodes.  
Undirected edges are defined between each factor node and its variables.  Fig. 2 
shows a factor graph for a simple multivariate algebraic function, along with its 
solution via the summary product algorithm [6], as is used in Sigma. 

Given evidence about a 
subset of the variables, 
messages are passed along the 
links and processed at the nodes 
to yield new messages.  Each 
message along a link provides 
information about the 
distribution of values for the 
link’s variable.  Incoming 
messages at variable nodes are 
combined via pointwise product 
– like an inner product without 
the final summation – to yield 
outgoing messages, but with 
each outgoing message omitting 
from its product the incoming 
message on its link.  Similar 
pointwise products occur at 
factor nodes, but with the factor’s function also included in the product; and then all 
variables not in the outgoing message are summarized out.  Summarization typically 
occurs via summation – or integration for continuous functions – to yield marginals, 
or via maximum to yield the mode.  Message passing terminates when a stopping 
criterion is hit, such as that no new message is significantly different from the 
previous message along the same link. 

Fig. 2: Summary product computation over the factor 
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = 
fi(x,y)f2(y,z) of the marginal on y given evidence 
concerning x and z.  Only the messages (and link 
directions) involved in computing y are shown. 



The generality and efficiency of the 
summary product algorithm depends 
critically on the representation used for the 
factor functions and messages.  In Sigma, 
a multidimensional piecewise linear 
representation is used, with one dimension 
per variable (Fig. 3) [8].  This enables 
approximating arbitrary continuous 
functions as closely as desired, plus 
specialization to discrete representations – 
such as probability distributions – by 
mapping integers in the function’s domain 
to unit regions while limiting the region 

functions to constants, and to symbolic representations by further limiting the 
constant functions to Boolean (0/T and 1/F) while assigning symbols to domain 
integers.  A form of hybrid mixed representation is thus proffered. 

Knowledge fragments in Sigma are specified via conditionals, such as the one in 
Fig. 4, which compile into subgraphs of long-term memory.  What is normally viewed 
as evidence in graphical models appears in working memory nodes in Sigma.  The 
conditional in 
Fig. 4 consists of 
two conditions 
and an action, 
thus amounting 
to a classical 
rule. 

The expression x-1 in the conditional’s action indicates the use of an offset [12], 
part of Sigma’s mechanism for affine transformations (in support of mental imagery) 
[13].  In general, a variable in a condition or an action may include a coefficient and 
an offset, where the coefficient must be a constant and the offset may be either a 
constant or a variable.  This isn’t simply a matter of multiplication and addition of 
values though, as an offset shifts a whole piecewise linear function along a variable’s 
dimension by modifying the region boundaries, while a coefficient may – once again 
by modifying region boundaries – expand, contract, or invert a dimension.  The 
combination of coefficients and offsets enables mental imagery to be translated, 
scaled and reflected.  When combined with variable interchanges, they also enable 
limited forms of rotation. 

When the offset is a variable rather than a constant, two random variables must be 
added, implicating a convolution in general.  Although convolutions have not yet been 
implemented in Sigma, when the offset variable only has a single nonzero value, it 
can simply be extracted and used like a constant.  Such an approach is exploited in RL 
to add the current reward to the (distribution over the) discounted future reward. 

Another feature of Sigma that is relevant to the implementation of RL is a 
generalization from the use of constants in conditions and actions – such as left in 
Fig. 4 – to the use of filters.  A constant in this context is essentially a filter that only 
passes through portions of messages that match it via a factor function that is nonzero 
only for the constant.  This has been generalized to allow arbitrary piecewise linear 

CONDITIONAL Move-Left 
   Conditions: (Selected state:s operator:left) 
               (Location state:s x:x) 

 Actions: (Location state:s x:x-1) 
 

Fig. 4: Grid conditional for executing action of moving left. 

Fig. 3: Bivariate function as a 2D array of 
regions with linear functions. 



functions to 
appear where 
previously only 
constant tests 
could.  Fig.5, for 
example, shows a 
conditional with a 
filter – in square 

brackets to distinguish it from an affine transform – that converts distributions over 
the possible Q values for the operators, ranging in [0, 10), into an expected Q value 
for each operator.  Q’s domain values are multiplied by .1, with the result then 
multiplied by the incoming message.  The variable q is summarized out via 
integration prior to the action, weighting each operator by its expected Q value. 

Conditions and actions in Sigma limit the direction in which messages are passed – 
those within condition subgraphs only move away from working memory while those 
within action subgraphs only move towards it.  This provides the forward momentum 
central to procedural memory.  Condacts – a neologism for conditions and actions – 
provide the bidirectional message passing required for the full generality of factor 
graphs, as used for example in probabilistic reasoning, constraint satisfaction, signal 
processing, and (partial match in) declarative memory [14].  The conditional in Fig. 6 
defines a transition function – i.e., an action model – using two conditions, a condact, 
and a function to specify an initial uniform distribution over the next location given 
the current location and operator.  The stars (*) in the function denote that the value 
specified (.125) 
applies to all triples 
of current location, 
selected operator, and 
next location.  The 
variable nx for the 
next state is 
underlined to denote 
normalization over it during learning. 

The core cognitive (or decision) cycle in Sigma involves message passing until 
quiescence, with the results then used in deciding how to modify working memory.  
Learning also occurs at decision time, by altering functions in conditionals (structure 
learning remains for future work).  Episodic learning modifies temporal functions in 
episodic conditionals that are automatically built for state predicates (such as 
Location and Selected).  Gradient descent learning modifies conditional 
functions, as stored in factor nodes, by interpreting incoming messages as gradients 
that are to be normalized, multiplied by the learning rate, and added to the existing 
function.  The idea for this learning mechanism, which was developed in conjunction 
with Abram Demski and Teawon Han, was inspired by earlier work [15] showing that 
gradient descent was possible in Bayesian networks, much as in neural networks, but 
without the need for an additional backpropagation mechanism because the local 
messages already determined the gradient.1  This form of learning is capable of 

                                                             
1 The version here only approximates the true gradient in [15], but was sufficient for this work. 

CONDITIONAL Transition 
   Conditions: (Location state:s x:x) 
               (Selected state:s operator:o) 
   Condacts: (Location*Next state:s x:nx) 
   Function<x,o,nx>: .125:<*,*,*>  

 
Fig. 6: Grid conditional for an initially uniform transition 
function (action model). 

CONDITIONAL Select-Operator 
   Conditions: (Location state:s x:x) 
               (Q x:x operator:o value:[.1*q]) 

 Actions: (Selected state:s operator:o) 

Fig. 5: Grid conditional that transforms distributions over Q values 
into operator weights for selection. 



working in either a supervised or unsupervised manner, and in Sigma supports both 
basic RL and model learning. 

4   RL in Sigma 

The core idea for deriving an RL algorithm from Sigma has been to leverage gradient 
descent in learning Q values over multiple trials, given appropriate conditionals to 
structure the computation as is needed for this to happen.  Much of the work has 
therefore involved understanding what these conditionals should be. 

Two conditionals – the one in Fig. 4 plus another like it – implement the left and 
right actions in the grid task.  Given these two conditionals, plus a third that 
proposes the actions for selection, Sigma performs a random walk until the goal is 
achieved.  To enable Q values to determine which action to choose, the proposal 
conditional must be 
augmented to use them as 
operator weights – or 
numeric preferences – as in 
Fig. 5.  Initial Q values must 
then also be provided, as in 
Fig. 7.  If direct evidence 
were provided for the 
action’s Q values, it would 
be trivial to use gradient 
descent to learn better values for this function without needing to invoke 
reinforcement learning.  However, without such evidence, RL is the means by which 
rewards from later steps in task 
performance propagate backwards to 
serve as input for learning Q values 
for earlier steps.  This occurs via a 
combination of: (1) learning to 
predict local rewards from the 
externally provided evidence for 
these rewards; and (2) learning to 
predict both discounted future rewards and Q values by propagating backwards the 
discounted sum of the next location’s local reward and its discounted future reward. 

To (learn to) 
predict a location’s 
reward, the 
conditional in Fig. 8 
is added.  To learn 
discounted future 
rewards and Q 
values, the 
conditional in Fig. 9 
is added (along with 

CONDITIONAL Q 
   Conditions: (Location state:s x:x) 
   Condacts: (Q x:x operator:o value:q) 
   Function<x,o,q>: .1:<*,*,*> … 
 

Fig. 7: Grid conditional for an initially uniform 
distribution over the Q values for the operators, given the 
locations. 

CONDITIONAL Backup 
   Conditions: (Location state:s x:x) 
               (Selected state:s operator:o) 
               (Location*Next state:s x:nx) 
               (Reward x:nx value:r) 
               (Projected x:nx value:p) 
   Actions: (Q x:x operator:o value:.95*(p+r)) 
            (Projected x:x value:.95*(p+r)) 

Fig. 9: Grid conditional for backing up rewards. 

CONDITIONAL Reward 
   Condacts: (Reward x:x value:r) 
   Function<x,r>: .1:<[1,6)>,*> … 
  

Fig. 8: Grid conditional for an initially uniform 
distribution over rewards at locations. 



an unshown conditional for discounted future rewards).  The Backup conditional 
examines the current location and operator, along with the predicted next location – as 
given by the transition function – and its predicted local reward and future discounted 
reward.  In the actions, it leverages an affine transformation, with an offset to add the 
next location’s predicted local reward to the distribution over its predicted future 
reward, and a coefficient to discount this sum.  RL then results from using the 
messages that are passed back to the conditional functions as gradients in learning Q 
values and discounted future rewards. 

 Fig. 10 summarizes 
how RL emerges from all 
of this.  Double arrows 
with elliptical tips 
represent decisions for the 
operator and location.  
Solid arrows predict 
aspects of the current 
location.  The gray box is 
the external reward.  
Dotted boxes and arrows 
are predictions of/for the 
next location.  Value 
backup involves the gray 
triangles and curved arrow. 

The resulting form of learning is like SARSA rather than Q-learning because it is 
driven by the operator actually selected rather than by the best available operator.  
This form of RL also is model based, leveraging a version of the transition conditional 
in Fig. 6 that embodies probabilities corresponding to the actions’ actual effects.   
Learning then occurs via gradient-descent-based refinements to the functions in Figs. 
7-8 and the unshown one, for the distributions over Q values, local rewards, and 
discounted future rewards, respectively. 

After completing 20 trials for each of the two possible extreme starting points –
locations 1 and 6 – the expected value of the learned reward function (by location) is 
identical to the 
externally defined 
reward function: <0, 0, 
0, 0, 9, 0, 0, 0, 0>.  The 
expected values 
learned for the 
discounted future 
reward are shown in 
Fig. 11 (Fixed Model).  
This peaks, as it 
should, as the goal 
location (4) is neared, 
but is zero for both the 
goal location and the 
buffer locations since 

 

Fig. 10: Variables and processes for RL in the grid task. 

 
Fig. 11: Learned expected discounted future reward. 



they are initialized 
to zero and no move 
is ever made from 
them.  The expected 
Q values learned for 
left vs. right 
are shown in Fig. 
12.  As desired, 
moving right is 
preferred when left 
of the goal and 
moving left when to 
the right.  There is 
no preference at the 
goal. 

These results have been presented in terms of point values, a format that matches 
what is normally seen with RL.  However, the learning actually involves full 
distributions rather than individual points, with points computed as expected values 
over distributions.  Learning via distributions rather than points has been natural in 
Sigma, but it may also prove particularly advantageous when distributions can help, 
for example, identify when a representation is too coarse [16], or when a Soar-like 
impasse – forms of which already exist in Sigma [17] – should occur [18]. 

Everything in this example was learned in a synchronic manner, considering only 
one actual location.  Even reward backup was synchronic, being based on the 
distribution over the predicted next location rather than on the actual next location.  
By focusing on learning to predict, RL has been able to proceed within Sigma in the 
context of a single actual location.  However, for model-free RL, a pair of actual 
locations must be available simultaneously in working memory so that value backup 
can occur without the aid of the predictions the transition function provides in model-
based RL.  Similarly, although an initial uniform transition function is provided when 
the action models are to be learned, the correct gradient cannot be computed unless 
both locations are simultaneously in working memory. 

As Sigma worked prior to this investigation of RL, consecutive states were 
simultaneously present only during the decisions that occurred at the end of cognitive 
cycles, when old working memory values were replaced by new ones.  However, just 
one of these states would be in working memory at a time.  If Sigma were extended to 
transiently represent both at once in working memory – essentially during the 
decision – with a solution to the graph occurring in the interim and learning enabled, 
then the kind of diachronic learning required for both model-free RL and the learning 
of action models should be possible with only a minimal extension to Sigma’s 
architectural code.  This is in fact what has been implemented.  During decisions, new 
values are placed into next variants of to-be-altered state predicates – 
Location*Next here – and the graph is again solved with learning enabled, before 
actual modifications are made to working memory (and the next variants are flushed). 

Now, when there is no transition conditional, model-free RL results, with value 
backup based on the actual next location rather than the predicted one.  Given 20 
trials, the expected discounted future rewards are the same as those learned with a 

 
Fig. 12: Learned expected Q values. 



fixed model (Fig. 11).  When the uniform transition conditional from Fig. 6 is 
included, the gradient necessary to learn action models becomes available, enabling 
them to be acquired during the same trials in which rewards, Q values, and discounted 
future rewards are learned.  Running 20 trials here yields a transition function where 
the only entries that are above the initial value of .125 are shown in Fig. 13 (with 
darkness corresponding to functional value).  All of the on-path moves have a 
functional value 
of 1, whereas the 
two off-path 
moves predict the 
correct transition 
but at lower 
values.  The expected discounted future rewards here – Fig. 11 (Learned Model) – are 
nearly indistinguishable from those learned with a predefined transition function. 

5   Conclusion 

Learning is central to general intelligence, with reinforcement learning providing a 
particular form that that has been prominently featured within both AGI and several 
cognitive architectures.  When the time came to address how reinforcement learning 
would work in Sigma, the intriguing possibility arose of its emerging from the 
interactions among a general set of more basic mechanisms, making RL a derived 
capability rather than an architecturally implemented mechanism, and satisfying the 
joint constraints of functional elegance, Occam’s razor and Newell’s exhortation. 

The work presented here is still only a beginning, but it does show how RL can be 
deconstructed in terms of a local form of gradient-descent learning plus appropriate 
knowledge structures, to yield basic on-policy, model-based, reinforcement learning.  
A single extension to Sigma – to simultaneously represent both the current and next 
state during an interpolated graph solution – was then required to enable both model-
free RL and (intertwined) model learning.  As it turns out, this is a non-RL-specific 
extension that was also motivated, for example, by the related problem of learning 
transition functions for POMDPs in Sigma [19].  The extension of Sigma’s affine 
transformations to variable offsets also occurred in service of implementing RL, 
although the idea and the understanding of its need both predated this work on RL. 

Much more is still required in a complete, state-of-the-art, architecturally 
integrated capability for reinforcement learning, including exploration, scaling, and 
structure learning.  Also necessary is extensive experimentation with more complex 
tasks, careful comparisons with implementations of RL in other architectures, and 
investigations of synergies that might become available when RL interacts with other 
knowledge and capabilities in Sigma.   Yet, the important result remains, that the core 
of RL has been demonstrated, along with its intertwining with model learning, and all 
in a functionally elegant manner. 
 
 

 

Fig. 13: Learned transition function. 
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