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Abstract. This paper describes our Extensible Language Interface (ELI) for ro-
bots. The system is intended to interpret far-field speech commands in order to 
perform fetch-and-carry tasks, potentially for use in an eldercare context. By 
“extensible” we mean that the robot is able to learn new nouns and verbs by 
simple interaction with its user. An associated video [1] illustrates the range of 
phenomena handled by our implemented real-time system.  
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1 Introduction 
As argued in [2] with an eye toward Vygotsky, much of intelligence is actually illu-
sory since the bulk of what we consider knowledge or competence is transmitted cul-
turally. No one figures out how to cook macaroni and cheese by experimentation – 
some other person tells you how to do it. While part of the feeling of aliveness comes 
from the responsiveness of a creature with a reasonably deep perception of its envi-
ronment, even humans from a different society can be successfully demonized as 
“sub-human” if you cannot understand what they say. If robots are ever to be per-
ceived as sentient it seems crucial that they also be able to learn in this manner and 
thus partake of the rich prevailing culture which underpins much of “human-ness”.  

Language understanding and learning also has pragmatic value. For instance, a ro-
bot that could perform simple fetch-and-carry tasks would be a boon to eldercare. 
However the robot must be told what to do somehow. The current generation of sen-
ior citizens is not comfortable with tablets, keyboards, styli, PDAs, or Bluetooth 
headsets – these are just one more thing to drop or misplace. The most human-
friendly interface is direct speech using an audio pickup on the robot itself. The trick 
then is interpreting the spoken commands robustly. In addition, a particular home may 
have locations, like the “solarium”, or objects, like “my favorite cup”, which cannot 
be known a priori and hence cannot be preprogrammed into the robot. Thus it would 
be convenient if the robot could just be shown such places and objects and learn what-
ever models it needed automatically. In addition there may be activities such as “tidy 



up the nightstand” that are specific to an individual. Again, being able to learn these 
things on the fly given verbal (and perhaps gestural) guidance would be a benefit. 
This is what we have endeavored to create: a speech guided mobile robot that can 
learn new nouns and new verbs based on user instruction. Fig. 1 shows a block dia-
gram for our Extensible Language Interface (ELI) and the physical robot it controls. 
What we have built is essentially a service dog with more language and less slobber.  
 

 
Fig. 1. Our robot can interpret spoken commands as well as learn new nouns and verbs. The 
experiments here were performed using the arm and camera from our large robot Eli (left) 
mounted on a table top in order to reduce the degrees of freedom to be controlled.  

Of course this is not the first home robot or the first mobile manipulator. There is the 
impressive PR2 from Willow Garage [3] which can do things like fold towels (but 
slowly, and for $400K). HERB, developed at CMU [4] is also intended to perform 
household tasks, but currently requires environmental modifications for its vision 
system. Then there is El-E from Georgia Tech [5] that was specifically created to 
retrieve objects for disabled persons. However, none of these robots are designed 
around a speech interface – to change their actions you either completely change their 
programs or you configure options in a GUI. Other robot such as Carl [6] and Cosero 
[7] can take speech input, but require a handheld or headset mike. Furthermore, in 
general these robots are not intended to learn in the field from user interaction. Instead 
they have various preprogrammed competencies, object models, and environmental 
maps which are developed offline.  

Other work has addressed language-based learning. Much of this, however, has 
started at a very low level. Steels [8]  looks at the emergence of a private language 
between cooperating agents while Roy [9] attempts to directly associate acoustic frag-
ments with visual fragments. What we believe is more useful is to stick with a human 
language and just attempt to find suitable bindings for a few unknown words. This is 
akin to the approach taken in HAM [10] for learning place names. Similarly, proce-
dure learning is often attempted through trial-and-error experimentation [11] or using 
the impoverished feedback of reinforcement learning [12]. Yet explicit macro defini-
tions or verbal scripting [13] is often faster and more effective in practice. 



2 Multimodal Instructional Dialog 
The goal for our system is for the user to describe a task, through a combination of 
speech and gesture (multi-modal), and then have the system successfully accomplish 
this task. If it is unsure about some aspect of the task, it should ask clarifying ques-
tions (dialog). In addition, we want the system to be able to learn about new objects 
and new procedures to enable a “verbal programming” facility (instruction). All these 
capabilities are described below and demonstrated in an associated video [1]. 
 
2.1 Robotic Substrate 
Since our example tasks all concern objects on a table, it is important for the robot to 
detect objects. To do this it looks for “obvious” objects, as shown in Fig. 2. It starts by 
color enhancing the scene from its camera, then builds a model in terms of HSI bands 
that pass the bulk of the pixels (i.e. the table). The “holes” in this mask are then po-
tential objects. A similar method is used with the depth camera on the large robot. 
However instead of modeling the table in terms of a dominant color, it is modeled as a 
3D plane. Again, deviations from this model are potential objects. Once an image 
segmentation has been performed, the color(s), shape, size, and relative positions of 
the objects can be computed. 

 

 
Fig. 2. The system uses a simplified object finding routine. The steps of this process are to take 
the input image (left) and enhance its color, find a uniform description for the majority of the 
area (middle), then identify isolated, non-table regions (right). 

To actually grab an object, the 2D image coordinates must be turned into a 3D posi-
tion for the arm. To do this we compute a homography based on 4 calibrated points 
that maps 2D image locations to 2D locations on the table surface. We then select an 
image point likely to be near the middle of the bottom of the object and apply this 
transform in order to find its x and y. A fixed z position of 1.5 inches above the table 
is specified to complete the grasp point. Next we solve for the inverse kinematics of 
the arm, then plot a linear endpoint trajectory from the current position to a “via” 
point in front of the object such that the gripper is aimed toward the object at this 
location. A second short trajectory then leads from the via point to the grasp point to 
ensure a reasonable approach direction for the gripper. 

Another important basic capability is understanding human gesture. Here (Fig. 3) 
we use background subtraction to find the user’s moving hand. We track the most 
extreme point of the difference region (left) and, once it stops moving, generate a 



“click” on the image. Given the previously detected objects, we can map this to the 
most likely one (middle). Similar processing allows the robot to detect when a human 
hand has entered an object “transfer zone” (right). In such a case the robot either 
opens or closes its gripper. Once again, this same algorithm for hand detection can be 
applied even more easily and robustly to depth data. 

 

 
Fig. 3. Gesture recognition is implemented by using background subtraction to track the user’s 
hand. The most extremal portion of this mask (left) selects one of the objects previously identi-
fied (middle). User motion detection for object handoff (right) works in a similar manner. 

2.2 Natural Language Interpretation 
For speech recognition we use an Acoustic Magic VT2 far-field array microphone. 
Interpretation is performed using a semantic grammar with the Microsoft ASR Engine 
in Windows XP, although we have also successfully used the IBM Attila engine [14].  

An example semantic grammar is shown in Fig. 4. Here there are a number of rules 
prefixed by “=” that offer several valid expansions for each non-terminal. Elements in 
parenthesis are optional, whereas the asterisk denotes an unconstrained dictation of up 
to 5 words. In general, we assume that all expansions for “toplevel” start and end with 
a silence segment. To prevent spurious action when humans are talking to each other, 
we require the presence of an attention word (e.g. “Eli”) at either the start or end of 
each such directive. After generating a valid parse, the resulting tree of expansions is 
mined to generate a simple slot-value representation for the utterance (top). To do this 
we take each capitalized non-terminal as a slot and assign it the value of whatever 
first level expansion was used. As can be seen in the example utterance, many of the 
surface words are simply discarded. 

Using the visual object detection and characterization methods previously de-
scribed, along with a more complex semantic grammar, the robot can grab objects 
specified by color, size, position, or gesture. It can also answer questions about ob-
jects that have been selected in this way. Fig. 5 provides a transcript of an experiment 
testing the robot’s proficiency. One interesting aspect of this conversation is how the 
robot resolves pronouns through non-linguistic means. If there is only one object pre-
sent, the binding for “it” is obvious. However if there are several objects, the robot 
will execute a dialog move to seek clarification. By contrast, if some particular object 
had recently been mentioned, the robot assumes that this is the proper grounding for 
the pronoun instead. Eli is also capable of executing a mixed mode dialog response, 
as when it suggests which of the two white objects the user might have wanted by 
pointing. Finally, the robot also knows the limits of its own abilities in terms of reach 



and grasping size. That is why, when directed to grasp the green object (the head of 
lettuce shown in Fig. 3), it demurs. 

 

 
Fig. 4. This is part of the grammar used for speech parsing. A full utterance is converted to a set 
of slots and values (top) based on the capitalized categories and their immediate children. 

 

 
Fig. 5. As this transcript of one of the video demos [1] shows, the robot can resolve pronouns 
based on context, understand gestures, and request clarification when needed. 

=[toplevel] 
<attn> (<intro>) <request> * 
* <request> (<intro>) <attn> 
 
=[attn] 
Eli  
robot 
 
=[intro] 
please 
first 
next 
 
=[request] 
<MOVE> 
<CHAT> 
<QUERY> <desc> 
<CMD> <desc> 
<learn> 
 
=[CMD] 
<hand_indicate> 
<hand_select> 
<hand_grab> 
<hand_give> 

=[COLOR] 
<red> 
<orange> 
<yellow> 
<green> 
<blue> 
<purple> 
<black> 
<gray> 
<white> 
 
=[blue] 
blue 
dark blue 
light blue 
 
=[obj] 
(<measure>) <NAME> 
<REF> 
object 
objects 
thing 
things 
bottle 
bottles 

=[hand_grab] 
grab 
grasp 
lift 
touch  
pick 
pick up 
select 
 
=[desc] 
<np> (<pp>) 
 
=[np] 
<PRON> 
<POINT> <obj> 
(<det>) (<SIZE>) (<COLOR>) <obj> 
(<det>) (<POSITION>) (<COLOR>) 
<obj> 
 
=[det] 
the 
a 
an 

“Eli, please grab the blue bottle now.” � { CMD=hand_grab, COLOR=blue } 

“Grab it.” (1 object) 
 <grabs object>  � no confusion since only 1 choice for “it” 
“Grab it.” (4 objects) 
“I'm confused. Which of the 4 things do you mean?”    � knows a unique target is required 
“What color is the object on the left?” (4 objects) 
“It’s blue.”  � understand positions & colors 
“Grab it” (4 objects) 
 <grabs blue object>  � uses “it” from previous interaction 
“Grab that object” (human points) 
 <grabs object>  � understands human gesture 
“Grab the white thing.” (2 white objects) 
“Do you mean this one?” <robot points>  � uses gesture to suggest alternative 
“No, the other one.” 
 <grabs other object>  � uses “other” from previous interaction 
“Grab the green thing.” (head of lettuce) 
“Sorry, that’s too big for me.”  � sensitive to physical constraints 



2.3 Visual Object Naming 
While colors, sizes, positions, and pointing can be used to draw attention to specific 
objects, in some cases it is more convenient to give objects names. One can then sim-
ply say “Give me the WD-40” and have the robot figure out which object this is. Of 
course to do this, the robot must know that “WD-40” is a valid object. It must also 
know what the object looks like in order to find it. To teach the robot new nouns like 
this, we use a simple speech pattern: “NP is called X”. Here the NP is any valid noun 
phrase in the grammar, such as “The big bottle” or “That thing” (with pointing). The 
X is then either drawn from a list of likely (but unknown) object words, or is an un-
constrained dictation item.  

When the user names an object, the first thing that happens is that a visual model 
of the object is built. This consists of a coarse size and shape description, plus a histo-
gram of semantic color features (e.g. 50% blue, 30% yellow, 20% red). For our small 
universe of objects on a table, this is sufficient to find similar objects. If the same 
name is taught multiple times, the system will learn multiple models for the object. 
This nearest-neighbor classifier adds robustness since the appearance of objects often 
varies from side to side, or from different vantage points. Note, that although an ob-
ject can be described verbally with enough specificity to select it from among other 
items, when the robot actually experiences an object it can build a much richer model. 
 

 
Fig. 6. As this transcript of one of the video demos [1] shows, the robot can be taught new 
nouns by simply showing it objects. The new visual model can then be used in various ways. 

The second step in learning is to add the declared name to the <NAMES> category in 
the grammar. This is kept distinct from generic nouns like “object” because items in 
the <NAMES> class usually have one or more visual models associated with them. 
An interesting problem we have run into is that the dictation results are not always 
reliable. For instance, when the user says “aspirin” the system sometimes hears “of-

“Eli, what is the object on the left?” 
 “I don’t know.”  � no existing visual model matches object 
“Eli, that is aspirin.” 
 <new word added to grammar>  � word acquired via dictation 
 <new visual model for object> 
“Okay. This is aspirin.” <points> 
“Eli, this object is Advil.” (human points) 
 <new visual model for object>  � word already known 
 “Okay. That is Advil.”  
“Eli, how many Advil do you see?” 
 “I see two.”  � uses existing visual model to find item(s) 
“Eli, give me the Tylenol.” 
 <gets bottle> � uses existing visual model to find item(s) 
 “Here you go”  
 <waits for user hand motion> <releases> 
 <waits for user hand motion> <regrabs bottle>  
“Thanks.” 
 <replaces bottle> 
“Eli, where is the aspirin?” 
 “Here.” <points>  � uses existing visual model to find item(s) 



fering”. For a speech-only system this is fine since a name is just a random acoustic 
label. If the robot hears “Pick up the offering” it will perform the correct action. In 
fact, humans managed to exist for thousands of years with just such cues, having no 
written language or fixed orthography. However when trying to look up properties of 
an object elsewhere (as in the next section), the correct term “aspirin” yields much 
more relevant information. 

Fig. 6 gives the transcript from an experiment in which the robot’s learning of new 
nouns was tested. As can be seen, objects can be indicated either verbally or by point-
ing. The robot can then use its learned models to find things, count them, and name 
them when requested. 

2.4 Semantic Web Access 
Many useful functions can be performed by an eldercare robot with just the perceptual 
and manipulation capabilities already described. However, we can also provide 
smarter guidance about proposed actions using external data. At our Tokyo lab we 
built a remote consultation agent called Brainy Robot And Intelligence Networked 
System (BRAINS) that has access to richer semantic information, largely based on the 
names (types) of objects. Every time the robot interprets a local utterance, it forms a 
potential action plan and transmits this (via TCP/IP socket) to BRAINS for vetting. A 
sample of the communication is shown in Fig. 7. The robot generates semantic net-
work triples describing the proposed action, then BRAINS can either accept or veto 
the action, or counter-propose some other action. 
 

 
Fig. 7. The robot communicates with the BRAINS system using semantic network triples. 

Fig. 8 shows the transcript of an experiment with BRAINS in the loop. In one case, it 
consults a database for the user and discovers an aspirin intolerance and thus vetoes 
dispensing it. Tylenol (paracetamol) does not raise such concerns, hence BRAINS 
allows this action to be performed. However we also maintain a personal history 
(LifeLog) for the user and record when Tylenol was given. Thus, when in the last 

“Now hand me some aspirin” 
 
  robot: act-7 --instance-of--> give 
  robot: act-7 --status--> proposed 
  robot: act-7 --target--> obj-3 
  robot: obj-3 --status--> visible 
  robot: obj-3 --instance-of--> aspirin 
  robot: *over* 
      BRAINS: act-7 --status--> vetoed 
      BRAINS: act-8 --instance-of--> say 
      BRAINS: act-8 --status--> allowed 
      BRAINS: act-8 --message--> “But that will hurt your stomach.” 
      BRAINS: *over* 
  robot: act-8 --status--> completed 
  robot: *over* 
      BRAINS: *over* 



interaction the user again requests Tylenol (perhaps because of memory loss or sim-
ply impatience), BRAINS vetoes the action because sufficient time has not elapsed 
between doses. The other interaction demonstrated here makes use of a taxonomy 
built for IBM’s Jeopardy! project [15]. The user requests a medication (Rolaids) 
which is not only unknown, but not present on the table. Yet by using the taxonomy 
and information about the scene, BRAINS can suggest a similar item that is present. 

 

 
Fig. 8. As this transcript of one of the video demos [1] shows, the backed system can look up 
personal information, reason about substitutions, and monitor events over time. 

2.5 Verbal Procedure Learning 
Not only can Eli learn new nouns, he can also learn verbs. Fig. 9 shows the transcript 
from an experimental run where the robot is being taught to poke things. The user 
teaches the action as a series of steps, like a verbal scripting language, as opposed to 
imparting some declarative specification of a desired result state. The steps them-
selves are indexical (as needed) so that, when they are composed, the whole sequence 
is also indexical. In other words, since the “point” action requires a focus object, the 
resulting “poke” action does also. As the later part of the transcript indicates, once an 
action has been learned it can be directly applied to other objects in the scene. 

Fig. 10 shows the part of the grammar associated with the verb acquisition process. 
Learning is initiated either by the user requesting an unknown action, or by explicitly 
saying “I’m going to teach you how to X”. If a word is specified for X, it is added to 
the grammar and becomes the label for the new action. Once the learning mode is 
entered, the robot records each successive action request made by the user. Learning 

“Eli, this object is aspirin.” (human points) 
 <new word added to grammar>  � word acquired via dictation 
 <new visual model for object> 
“Okay. That is aspirin” 
“Eli, the object on the right is called Tums.” 
 <new visual model for object>  � word already known 
“Okay. This <points> is Tums.” 
“Eli, give me some aspirin.” 
 <check against personal database>  � uses existing visual model to find item(s) 
“But that will hurt your stomach.” 
“Eli, give me some Tylenol instead.” 
 <gets bottle>  � uses existing visual model to find item(s) 
“Here you go” 
 <waits for user hand motion> <releases> 
 <waits for user hand motion> <regrabs bottle>  
“Thanks.” 
 <replaces bottle> <records dose in lifelog> 
“Eli, give me some Rolaids.” 
 “I don’t know what Rolaids looks like.”  � no visual model for item 
 <ontology used to find available alternative(s)> 
“Do you want another antacid, Tums?” 
“Eli, just give me some Tylenol.” 
 <lifelog consulted for last dose>  � uses existing visual model to find item(s) 
“You just had Tylenol.” 



is terminated by a phrase such as “That’s how you do it”.  At this point the sequence 
of parameterized actions is recorded and associated with the X term (possibly from 
the termination phrase) to give a new action primitive. This “macro” sequence is now 
invoked when the label X is used as a verb. And, since the user can call for it directly, 
it can also be included as a step in some other more complicated learned procedure. 
 

 
Fig. 9. As this transcript of one of the video demos [1] shows, the robot can be taught a new 
verb by simply walking it through the appropriate steps. 

 

 
Fig. 10. Here is a fragment of the grammar (left) the robot uses to learn how to “poke” some-
thing (upper right). The result is a parameterized sequence of actions (lower right). 

“Eli, poke the thing in the middle.” 
 <new action sequence opened for input>   � no existing action sequence to link 
“I don’t know how to poke something.” 
“Eli, point at it.” 
 <points>  � resolves pronoun from previous selection 
“Eli, extend your hand.” 
 <advances>  � low level incremental move 
“Eli, retract your hand.” 
 <retreats>  � low level incremental move 
“Eli, that is how you poke something.” 
 <links action sequence to word>  � recognizes closing of action block 
“Okay. Now I know how to now poke something.” 
“Eli, poke the red object.” 
 <pokes>  � retrieves action sequence for verb and executes 
“Eli, poke the object on the left.” 
 <pokes>  � retrieves action sequence for verb and executes 
“Eli, poke the Tylenol.” 
 <pokes>  � retrieves action sequence for verb and executes 

point  1.0 
“poke” 

out  1.0 
out -1.0 

=[FINISH] 
that's how you   
that is how you 
 
=[vp] 
do it 
 
=[arg] 
something 
an object 
<desc> 
 
=[ACT-0] 
wave 
 
=[ACT-1] 
poke 
nudge 

=[learn] 
<NEW-ACT> do something 
<NEW-ACT> <ACT-0> 
<NEW-ACT> <ACT-1> <arg> 
<FINISH> do it 
<FINISH> <ACT-0> 
<FINISH> <ACT-1> <arg> 
 
=[NEW-ACT] 
<teach> <demo> you how to 
 
=[teach] 
I'm going to  
I am going to  
let me   
 
=[demo] 
show 
tell 
teach 



3 Conclusion 
We have described how Eli, our speech-based robot manipulator, selects and moves 
objects around on a table. We explained how the language parsing works, how objects 
are found, and how human gestures are detected. The robot is also able to answer 
questions about the scene in front of it and resolve ambiguities in any commands it 
receives. In addition it can be taught the names of objects and use these labels to ac-
cess information in remote databases. Finally, it is also possible to “program” the 
robot by teaching it new named action sequences. The operation of the system and 
these components was illustrated via transcripts from a series of video experiments 
[1] with the actual robot. Although our language interpreter is built with conventional 
technologies, consider a Turing machine by analogy. At its heart there is an FSM 
which, in itself, is not so interesting. Yet having something like this allows the crea-
ture to manipulate the “tape” of culture and thus greatly expand its capabilities.  
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