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Abstract. Many existing AGI architectures are based on the assumption of infi-
nite computational resources, as researchers ignore the fact that real-world tasks 
have time limits, and managing these is a key part of the role of intelligence. In 
the domain of intelligent systems the management of system resources is typi-
cally called “attention”. Attention mechanisms are necessary because all mod-
erately complex environments are likely to be the source of vastly more infor-
mation than could be processed in realtime by an intelligence’s available cogni-
tive resources. Even if sufficient resources were available, attention could help 
make better use of them. We argue that attentional mechanisms are not only 
nice to have, for AGI architectures they are an absolute necessity. We examine 
ideas and concepts from cognitive psychology for creating intelligent resource 
management mechanisms and how these can be applied to engineered systems. 
We present a design for a general attention mechanism intended for implemen-
tation in AGI architectures. 
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1 Introduction 

Most higher intelligences in nature have a built-in mechanism for deciding how to 
apply their brainpower from moment to moment. We call it attention, and by that we 
mean cognitive resource management of some type. As the real world is generally a 
source of much more information than any single intelligent agent could ever hope to 
cognitively ingest and process in any given period of time, even the smartest being of 
them all must come equipped with attentional mechanisms of some sort. Powerful 
methods for cognitive resource management are critical if we intend to create more 
capable AI systems than seen to date, systems capable of learning to solve novel tasks 
and adapting to unforeseen changes in environments of real-world complexity, while 
operating under time constraints – systems we refer to as artificial general intelligence 
(AGI) systems. Given the short shrift this subject has gotten in the AI literature, it can 
hardly be overemphasized that an AGI operating in the real world will have limited 



resources at all times. Ignoring how to design attention will only delay the day when 
AGI arrives on the scene. Natural attention is a cognitive function – or a set of them – 
that allow animals to focus their limited resources on relevant parts of the environ-
ment as they perform various tasks, while remaining reactive to unexpected events. 
Without it we could for example not stay alert to environmental events while finishing 
an important task, or manage multiple tasks at the same time. This cognitive function 
is not any less critical for AGI systems than it is for humans. In this paper we present 
a high-level design of an attention mechanism and discuss how prior work in cogni-
tive psychology serves as a backdrop and inspiration. First we survey selected work 
on human attention from cognitive psychology and extract ideas we consider useful 
for implementing of attention in AGI systems. We review implementations of atten-
tion within some existing cognitive architectures and discuss their benefits and limita-
tions. We then outline our attention mechanism designs, which is based on a holistic 
approach to attention, addressing data and process prioritization, and featuring simul-
taneous top-down and bottom-up control. The design makes few and fairly high-level 
requirements for the underlying architecture but is otherwise architecture-
independent. The design proposal presented here is just that – a proposal for a design 
– but the basic principles on which it rests have already been proven in prior architec-
ture implementations (Nivel 2007 & 2008, Thórisson 2009a & 2009b).  Our work so 
far has not only resulted in the new attention mechanism presented here but also 
greatly affected the kinds of architectures we consider to be relevant to AGI research 
– architecture and attention are co-dependent. In that respect we discuss how the at-
tention mechanism presented can be used for managing meta-cognitive operation and 
architectural self-growth, two fundamental functions of AGI systems (Thórisson & 
Helgason 2012). 

2 Attention in Cognitive Psychology 

The beginning of modern attention research is frequently associated with the work of 
Colin Cherry on the “cocktail party effect” (Cherry 1953), which examines how hu-
mans can focus on specific sensory data in the presence of distractions and back-
ground noise while still staying alert to relevant and/or important information that 
unexpectedly appears in the background. This ability implies simultaneous operation 
of a selective filter and deliberate steering mechanism which together perform alloca-
tion of cognitive resources. Deliberate, task-driven functionality is referred to here as 
top-down attention, reactive, stimulus-driven functionality as bottom-up attention. A 
number of psychological models for attention have been proposed that typically fall 
into one of two categories. Early selection: Selection of sensory information occurs 
early in the sensory pipe-line and is based on primitive physical features of the infor-
mation (shallow processing) and little or no analysis of meaning. Late selection: Se-
lection is performed after some level of non-trivial analysis of meaning at later stages 
of the sensory pipeline. The Broadbent filter model (Broadbent 1958) is one of the 
best known early-selection (filter) models. It assumes information filtering based on 
primitive physical features, with information that is not selected by the filter receiving 



no further processing. The Deutsch-Norman model (Norman 1969) is a well-known 
late-selection model. In contrast to the filter model, it proposes gradual processing of 
information to the point where memory representations are activated. Competitive 
selection is performed at the level of these representations, with the most active ones 
being selected for further processing. Some obvious problems are apparent for early 
selection models; they fail to account for commonly-observed human behavior such 
as noticing unexpected but relevant information – the cocktail party effect. The acous-
tic features alone of someone calling our name from the other side of a crowded room 
are not likely to be sufficient to attract our attention – some analysis of meaning must 
be involved. More recent models of attention focus on the interaction between top-
down and bottom-up attention, such as the Knudsen attention framework (Knudsen 
2007; see Figure 1). It consists of four interacting processes: working memory, top-
down sensitivity control, bottom-up filtering and competitive selection. This frame-
work seems to capture the major necessary parts for attention and be a promising 
starting point for AGI systems, from which some important issues for consideration 
can be extracted. Systems that are expected to perform tasks while remaining 
reactive to unexpected events require both deliberate, top-down attention as well 
as reactive, bottom-up attention. Top-down attention is responsible for ensuring 
that information relevant to current goals will receive processing. A system equipped 
with only this type of attention will frequently fail to notice (process) unexpected 
events that might be important for goals currently being pursued or necessary triggers 
for the generation of new ones. Bottom-up attention is responsible for detecting such 
events. This process is not (or less) influenced by current goals of the system, evaluat-
ing incoming information based on novelty, general relevance/familiarity to the per-
ceiver, and unexpectedness. Systems implementing only bottom-up attention are una-
ble to perform tasks beyond those that are simple and reactive, making tasks consist-
ing of multiple steps (requiring some form of planning) problematic. Managing the 
balance between top-down and bottom-up attention, in terms of resource alloca-
tion, is part of the role of attention. Combining these two “types” (or roles) of atten-
tion can give rise to flexible, interruptible systems capable of performing complex 
tasks. Finding an acceptable balance in resource allocation between these processes or 
goals is a necessary function of attention. Over-assigning resources to top-down atten-
tion will introduce operational risk, as probability of missed important events is in-
creased. Conversely, over-assignment of resources to bottom-up attention will ad-
versely affect task performance, making it more time-consuming and difficult to ac-
complish goals. Balance between the two is difficult to specify in advance, as it de-
pends on the environment and context of the system. This leads us to conclude that 
reaching and maintaining such a balance is a continuous and dynamic process that 
must be learned by the system from experience. Late selection models provide a 
more reliable measure of importance of information than early selection models. 
The shortcomings of early selection models were highlighted above. In the case of 
AGI systems, no assumptions can be made in advance with regards to the environ-
ment and system tasks; any incoming information is potentially important. While 
primitive physical features and signal characteristics may give rough clues to the im-
portance of information, this information seems insufficient to guide informed re-



source management decisions. Operational risk may result when information is ig-
nored without being related in any way to the operational experience (knowledge) of 
the system to determine meaning. For an example of why this may be problematic, 
consider subtle changes (in terms of basic information characteristics) in the environ-
ment that are precursors to important events – these are not likely to pass through 
classical early selection filters, potentially making the system unprepared to deal with 
critical scenarios. Competitive selection is more desirable than filtering. Viewing 
attention as a single-step process that decides whether information should be pro-
cessed or not, is problematic in terms of resource utilization. Such decisions must be 
made in light of current availability of resources. It seems more reasonable to let at-
tention evaluate the importance of incoming information, deferring processing deci-
sions to actual execution time at which time resource availability is fully known and 
information competes for processing based on attention-steered priority evaluation. 
 

 

Fig. 1. The Knudsen attention 
framework (from Knudsen 2007). 
Information flows up from the 
environment and passes through 
saliency filters that detect im-
portant or unusual stimuli. Infor-
mation that is passed through the 
filters then activates memory rep-
resentations that encode 
knowledge. Memory representa-
tions are also activated by top-
down sensitivity control, this pro-
cess is influenced by the contents 
of working memory and adjusts 
activation thresholds of representa-
tions. Representations compete for 
access to working memory, with 
the most active ones being admit-
ted. 

 

3 Prior work 

Some work has targeted attention in parts of AI systems, focusing on specific tasks 
and/or modalities (c.f. Schmidhuber 1991) and limited aspects of attention (c.f. Sku-
bic 2004). A key difference between that work and ours is that we target attention in a 
complete sense, as needed for a whole cognitive architecture. Second, we exclusively 
target architectures that have a goal of being general, i.e. targeting artificial general 
intelligence (AGI). Third, implementability of both attention itself, and the architec-
ture in which it operates, is a primary concern. Here we thus  limit the discussion  to 



the AGI domain. Only a handful of existing AGI architectures specifically implement 
some form of attention functionality, including NARS, LIDA and CLARION1. This 
chapter gives a brief overview of how these architectures implement attention and 
examines to what degree they satisfy some necessary requirements. NARS (Wang, 
1995) is a cognitive architecture implemented as a general-purpose reasoning system, 
targeting operation in realtime with insufficient knowledge and resources. The system 
implements attention using a computational control strategy called controlled concur-
rency where task execution is controlled by two prioritization parameters: urgency 
and durability. The urgency parameter is the main priority parameter and decays over 
time in relation to the value of the durability parameter, which is used to specify if a 
task is long- or short-term. The result is dynamic resource management where tasks 
compete for execution based on their priority value. While priority of internally-
generated goals is assigned by the system, original goals (provided by the developer) 
are assumed to have pre-assigned priority values. This delegates part of process pri-
oritization – an integral role of attention – to an outside control mechanism, which is 
problematic with regards to achieving autonomy. LIDA (Baars, 2009) is another cog-
nitive architecture based on a theory of human consciousness and targets intelligent, 
autonomous software agents. Attention is a core process of each operating cycle, con-
sisting of three phases: sensing, attending, and action selection. During the attending 
phase, selection of data for further processing is performed by a collection of atten-
tional codelets (small programs) which form coalitions of data that proceed to com-
pete for system resources. LIDA thus implements both filtering and competitive se-
lection for data. Attention is a learnable process in LIDA, allowing the system to im-
prove its data-filtering over time. The attention functionality of LIDA does not take 
resource availability into account, making realtime operation somewhat problematic 
and potentially introducing resource utilization issues. Additionally, prioritization and 
selection is applied only to the data side without consideration of process prioritiza-
tion. The CLARION cognitive architecture (Sun 2006) features a dedicated meta-
cognitive subsystem (MCS) responsible for information selection, dynamic selection 
of learning methods for different situations, and modifying control parameters of 
other system modules. The MCS does not have integrated temporal management as 
required for realtime processing, and control processes are not affected by availability 
of resources at any given time, although attention can be said to be involved with 
process control via tuning of control parameters as mentioned earlier. Data Selection. 
The most widely accepted function of attention is selection of data for processing. 
The architectures address this in different ways. LIDA and CLARION implement 
information selection (filtering, and competitive selection in LIDA) in special phases 
of the sensory pipeline; NARS opts for a prioritization-based approach, where infor-
mation is processed in decreasing order of urgency values as opposed to being fil-
tered, resulting in a pure competitive selection control mechanism. None of these 
architectures address both top-down and bottom-up attention, focusing largely on the 
top-down side. Control and Process Selection. While attention is often viewed as an 
information filtering process, we argue that it must address process control as an 

                                                           
1  See Thórisson & Helgason (2012) for a more general review of these architectures. 



equally important aspect. The control of an AGI system is not limited to information 
selection – it must include selection of proper processes at any point in time, based on 
the context of the system, which includes time and resource constraints, in light of 
constraints imposed by tasks and context. In CLARION there is some overlap be-
tween attention and process control, but none of the three architectures take a fully 
integrated approach to data and process selection. Realtime Processing. For AGI 
systems, one of the core goals of attention must be to allocate resources in light of 
internal and external temporal constraints. This requires some form of temporal rea-
soning as well as consideration of resource availability, as tasks become increasingly 
urgent when their deadlines approach and ongoing tasks may interfere with access to 
resources. NARS does temporal reasoning using relative timings between events; the 
system can represent order of tasks and events and specify the temporal aspects of 
tasks using the durability parameter. Relative handling of time is clearly better than 
no temporal management, but reasoning with absolute timings allows for more fine-
grained and precise control. NARS is implemented as a reasoning system and does 
not focus on perceptual nor action-related processes (inputs and outputs of the system 
are logical statements), emphasizing instead anytime performance. Integrated tem-
poral reasoning is missing in both LIDA and CLARION and the availability of re-
sources does not affect process control or data selection. 

4 Attention Mechanism Design 

We now present our design of an attention mechanism for AGI systems. The holistic, 
inclusive approach to attention we have taken includes top-down goal-derived control, 
bottom-up filtering and novelty interruption processes, and includes internal process 
control as part of the mechanism’s operation. While a general-purpose attention 
mechanism, applicable to any AI architecture, could be a goal to strive for, we do not 
believe this is possible, as resource management touches on too many fundamental 
issues in the structure and operation of an architecture to make it practically viable. 
Our proposed solution is only tractable if the following requirements are satisfied: 
Data-driven: All processing occurs as a result of the occurrence of data; individual 
processes are executed only when paired with data that fits the input specification of 
the process. This eliminates the need for fixed control loops, allowing for operation 
on multiple time scales, greater flexibility, and above all, high operating efficiency. 
Fine-grained: Processing and data units of the system are small and numerous (Thó-
risson & Nivel 2009a). Many such elements must collaborate to solve complex tasks. 
Reasoning about small, simple components and their effects on the overall system 
(e.g. in terms of resource usage) is more tractable than for larger, more complex com-
ponents. Predictive capabilities: Capacity to generate predictions with regards to fu-
ture expectations must be supported. Predictions are necessary control data for (top-
down) attention in addition to goals. Unified sensory pipeline: Data originating from 
inside or outside the system is given equal treatment, allowing cognitive functions of 
the architecture – attention, in particular – to be applied equally to task performance 
and meta-cognitive processing (e.g. self-configuration). Systems satisfying these re-



quirements will be built from small units of data and processing, with processes being 
executed when their input data specification is matched by an existing data item. Pat-
tern matching is a practical method for determining matches as it allows each process 
some flexibility. New data are continuously created as the external environment is 
sampled by the system’s sensors, triggering processes to run, resulting in either fur-
ther data items being produced or in commands for the system’s actuation devices, 
producing an action in the external environment, the effects of which are observed by 
the system via environmental sampling, closing the perception-action loop. For basic 
resource management, data and process need priority parameters; the main role of 
attention is, however it is implemented, to determine appropriate values for theses 
given the current operating situation. We refer to the priority parameters as activation 
in the case of processes, and salience in the case of data. System resources are man-
aged to execute processing units with highest activation, on data units with the highest 
salience (no processing unit will execute without a compatible data unit). Processes 
can take the role of data, and data can describe processes. Adjusting activation and 
salience is the main role of attention; this is viewed as a biasing task. In our system, 
four parallel attention processes perform these tasks, as described below. The compo-
nents in figure 2 that are involved in each process are indicated in parentheses. While 
this is probably not the only high-level system architecture that can meet the architec-
tural requirements above, it explains well the operation of our attention mechanism. 
Note that the above architectural requirements are probably neither complete nor suf-
ficient; for some AGI-acceptable attention mechanisms (unknown to us) they might 
not even all be necessary. That said, we have reason to believe that our proposed at-
tention mechanism, and the requirements it rests on, represent a valid and useful step 
in the direction of more capable AGI systems. Top-down data biasing (Attentional 
Patterns, Matching): At some level, the goals and predictions of the system must be 
specified in operational terms, identifying particular states (inside or outside the sys-
tem) that are desired (goals) or expected (predictions). Information contained in goals 
and predictions is used by this process to create attentional templates: Patterns that 
target data to varying levels of specification, from information related to a particular 
entity to all information coming from a single modality (e.g. auditory). For example, 
if the system has a goal of having object O1 in position P1, an attentional template is 
created that matches all information related to O1 (e.g. all data units referring to O1). 
This works identically for predictions. A unified sensory pipeline allows external and 
internal data to be targeted identically. When a data unit matches an attentional tem-
plate, it receives a positive bias relative to priority of the goal that spawned the tem-
plate. Data units that do not match any active attentional template will not receive bias 
from this top-down data biasing process. Bottom-up data biasing (Bottom-up Atten-
tional Processes, Evaluation): Events that are novel and unexpected (in terms of prior 
experience or in a particular context), yet not directly related to task-driven goals, will 
almost certainly occur during operation. As top-down processes only target expected 
and goal-related data, such events are by their nature unlikely to be caught by it. The 
bottom-up process is responsible for determining a quantitative measure of novelty 
and unexpectedness for incoming data items, and providing saliency bias to them 
accordingly. The underlying idea is that novel data are likely to be useful in some way 



– e.g. for learning or to detect events that threaten success of current goals. This pro-
cess is not responsible for determining actual relevance of data, but rather to give 
these data units greater chance of receiving processing. Novelty and unexpectedness 
are evaluated based on the operating experience of the system, data or patterns of data 
that have occurred before receive lower bias than previously unseen data. To accom-
plish this task under tight temporal (and likely also memory) constraints, it is neces-
sary to compress prior experience of the system in some way, preferably in data struc-
tures that allow for efficient look-up and comparison. Consequently, this process must 
constantly generate and update its control data based on incoming information in 
order for satisfactory evaluation of novelty and unexpectedness to occur. Habituation 
is an emergent operational property of this process, as novel or unexpected infor-
mation will cease to be so automatically after having been observed on an increasing 
number of occasions.  

 

Fig. 2. Overview of the proposed attention mechanism. 

Top-down process biasing (Contextual Process Evaluation, Contextualized Process 
Performance History, Experience-based Process Activation): While relationships 
between goals and processes are not obvious, these may be extracted from operational 
experience by tracking and maintaining history of the contribution of individual pro-
cesses to the achievement of individual goals. While this is a non-trivial task, as many 
goals will be achieved by the collaboration of a number of processing units, it is nev-
ertheless tractable using e.g. back-propagation from goal achievement through the 
operational chain which it resulted in (using some form of ampliative reasoning - c.f. 
Wang 1995). Furthermore, this process must have the capability to determine the 



similarity of goals, as goals are stated in precise operational terms and exactly identi-
cal goals are unlikely to occur multiple times. When a new goal is generated within 
the system, this process must search some compressed form of the operational history 
in order to find a sufficiently similar goal that has been previously achieved. The best 
such match (if one is found) results in positive biasing of processes that contributed to 
goal achievement on previous occasions. Bottom-up process biasing (Data -> Pro-
cess mapping): To ensure processing of most salient data units (especially early on in 
the operation of the system, when top-down process biasing has insufficient experi-
ence to perform efficiently), this process works to assign positive bias to processes 
that are capable of processing the currently most salient data. The main purpose of 
this attentional function is practical, as efficient operation of the system may be high-
ly problematic when no processing bias values are available due to the large number 
of processing units assumed to be present. The control of this process follows directly 
from the operation of top-down data biasing. 
Although the design itself does not feature processes directly dedicated to realtime 
operation, it facilitates realtime operation as it is based on small processing units and 
can better make predictions (including temporal ones) about its own operation. The 
significance of small processing units with homogenous computational complexity is 
that most processes take roughly the same amount of time to execute, making tem-
poral aspects of performance predictable, and that the system is highly interruptible 
and preemptive, never having to wait for time-consuming processes to complete be-
fore knowing how long it takes, or reacting to new data. Another important feature of 
the attentional design approach presented is that it can be applied directly to systems 
that manage their own growth and expansion – constructivist architectures (Thórisson 
2009c). As the sum of internal system activity is likely to constitute a large amount of 
information, it is desirable that the attention mechanism be used to manage resources 
for self-reconfiguration – in much the same way as it is used for other task perfor-
mance. The mechanism presented here already assumes a unified sensory pipeline: 
attention operates identically on environmental data and internal data. By generating 
internal goals supporting directed self-reconfiguration of the system and targeting 
internal states, AGI systems can be envisioned that simultaneously perform tasks in 
complex environments and manage their own growth, while operating under realtime 
constraints with limited resources.  

5 Conclusions 

Surprisingly little work focusing on attention has been performed in the field of AI, 
although we have seen that existing attention models from cognitive psychology can 
be mapped to AGI architectures in a useful way. In our work to design an AGI-ready 
attention mechanism we have found a large overlap between the functionalities of 
attention and the control mechanisms of the underlying architecture. This is an indica-
tion that retrofitting an existing architecture with the resource management capabili-
ties stated will be highly problematic; on close examination attention reveals itself as 
a ubiquitous function of a cognitive architecture, influencing operation and structure 



across all levels. So, while this work had the goal of designing an attention mecha-
nism, the result is also a near-complete control mechanism for cognitive architectures. 
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