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Formal Logic is Provably Irrepressible and Invincible

X should be guided by theorems (and in
some cases conjectures) and, in general,
the level of rigor required to produce
them.

_ Deduced, immediately: X should
be guided by formal logic.

To rationally reject logic requires
giving at least a precise argument
for doing so.

_ Deduced, immediately: Rationally
rejecting logic is self-defeating.
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Superminds

Superminds

Subjective consciousness,
qualia, etc. — phenomena
in the incorporeal realm

that can’t be expressed in
any third-person scheme
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Information Processing

Hypercomputation

persons

Turing
Limit
animals (chess, go, swimming, flying, locomotion)
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(Information Processing)

201

Turing Limit

dkH (n, k,u,v)
H(n,k,u,v)
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(Information Processing)

analog chaotic neural nets, infinite-time Turing
machines, Zeus machines, accelerating TMs,
“knob” machines, ...
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Conjecture

(see “lsaacson’s Conjecture™)

In order to produce a rationally compelling proof
of any true sentence S formed from the symbol

set of the language of arithmetic, but independent
of PA, it’s necessary to deploy concepts and

structures of an irreducibly infinitary nature.
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PA

Al Vz(0 # s(z))

A2 VaVy(s(z) =s(y) — =z =y)
A3 Vx(x #0 — Jy(x = s(y))

A4 Vz(x+0=x)

Ab  VaVy(z + s(y) = s(z +y))
A6 Vz(x x0=0)

A7 VaVy(x x s(y) = (¢ X y) + x)

And, every sentence that is the universal closure of an instance of

([(0) AV (o(x) = @(s(x))] — Vad(x))

where ¢(x) is open wif with variable x, and perhaps others, free.
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Godel’s
First Incompleteness Theorem

Let ® be consistent and decidable and suppose also that

® allows representations. Then there is an S,,-sentence ¢

such that neither ® - ¢ nor ® - —¢.
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