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As you must yourselves confess, the
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This is the first book-length presentation and defense of a new theory of human and People Harness Hypercomputatlon, and More
machine cognition, according to which human persons are superminds. Superminds are
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science in light of the fact that we are superminds.
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Superminds (2003)
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x is a person iff x has the capacity ...

® to “will,” to make choices and decisions, set plans and projects —
autonomously;

® for consciousness, for experiencing pain and sorrow and happiness, and
a thousand other emotions — love, passion, gratitude, and so on;

® for self-consciousness, for being aware of his/her states of mind,
inclinations, preferences, etc., and for grasping the concept of him/
herself;

® to communicate through a language;

® to know things and believe things, and to believe things about what
others believe (and so on);

® to desire not only particular objects and events, but also changes in his
or her character;

® to reason (for example, in the fashion needed to prove the correctness
of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



x is a person iff x has the capacity ...

g

‘\.,.

® to “will,” to ma
autonomously;

\nd projects —

ERiG -
’l‘|" [‘:9.. :
X
0»1_
é

-T! .;;
g
By

ABORTI(

® for consciousne: . v and happiness, and
a thousand othe . de, and so on;

- a
- dialogue 1tes of mind,

® for self-conscio
concept of him/

inclinations, pre
herself;

gell
o
.

l? /

ALris
Rl

® to communicate

® to know things :
others believe (z

ings about what

® to desire not on Selmiy Bﬁngsiﬁf t also changes in his
or her characte

A X
li"f "1:'..
L

® to reason (for e ove the correctness

of responses in

Sunday, March 8, 2009



x is a person iff x has the capacity ...

® to “will,” to make choices and decisions, set plans and projects —
autonomously;

® for consciousness, for experiencing pain and sorrow and happiness, and
a thousand other emotions — love, passion, gratitude, and so on;

® for self-consciousness, for being aware of his/her states of mind,
inclinations, preferences, etc., and for grasping the concept of him/
herself;

® to communicate through a language;

® to know things and believe things, and to believe things about what
others believe (and so on);

® to desire not only particular objects and events, but also changes in his
or her character;

® to reason (for example, in the fashion needed to prove the correctness
of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



x is a person iff x has the capacity ...

to “will,” to make choices and decisions, set plans and projects —
autonomously;

to communicate through a language;

to know things and believe things, and to believe things about what
others believe (and so on);

to desire not only particular objects and events, but also changes in his
or her character;

to reason (for example, in the fashion needed to prove the correctness
of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



x is a person iff x has the capacity ...

to “will,” to make choices and decisions, set plans and projects —
autonomously;

unsearchably difficult; ignore real p-

consciousness, and ignore real s-consciousness

to communicate through a language;

to know things and believe things, and to believe things about what
others believe (and so on);

to desire not only particular objects and events, but also changes in his
or her character;

to reason (for example, in the fashion needed to prove the correctness
of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



x is a person iff x has the capacity ...

® to “will,” to make choices and decisions, set plans and projects —
autonomously;

unsearchably difficult; ignore real p-
consciousness, and ignore real s-consciousness

® to know things and believe things, and to believe things about what
others believe (and so on);

® to desire not only particular objects and events, but also changes in his
or her character;

® to reason (for example, in the fashion needed to prove the correctness
of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



x is a person iff x has the capacity ...

® to “will,” to make choices and decisions, set plans and projects —
autonomously;

unsearchably difficult; ignore real p-
consciousness, and ignore real s-consciousness

machines still whipped by sharp toddlers; logic our only hope

® to know things and believe things, and to believe things about what
others believe (and so on);

® to desire not only particular objects and events, but also changes in his
or her character;

® to reason (for example, in the fashion needed to prove the correctness
of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



x is a person iff x has the capacity ...

® to “will,” to make choices and decisions, set plans and projects —
autonomously;

unsearchably difficult; ignore real p-
consciousness, and ignore real s-consciousness

machines still whipped by sharp toddlers; logic our only hope

® to know things and believe things, and to believe things about what
others believe (and so on);

® to desire not only particular objects and events, but also changes in his
or her character;

® to reason (for example, in the fashion needed to prove the correctness

of responses in false-belief, wise man, ... tests).

Sunday, March 8, 2009



Modeling the Mind with| Logic

aaaaaaaaaaaaaaaaaa



THE CAMBRIDGE HANDBOOK OF

Computational
- Psychology

Sunday, March 8, 2009



THE CAMBRIDGE HANDBOOK OF

Computational
- Psychology

*' .
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Bringsjord, S. (2008) “The Logicist Manifesto: At Long Last/Let Logic-
Based Al Become a Field Unto Itself” Journal of Applied Logic 6:45502=525.
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Absolutely Crucial for AGI:

I’'m betting the farm on one logical system L
(e.g., production systems, CYC-L, ...).
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versus

| know humans operate in ways that range
across these logical systems, so | need a formal

theory, and a corresponding set of processes,
that captures the meta-coordination of various

logical systems.
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formalized, so that the field can be theorem-guided.

For Al, we can fall back on computing functions.
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Method

Isolate and dissect the impressive cognition in question,
whether in humans or computing machines.

Formalize this cognition in advanced logical systems.
As needed, carry out further formal analysis, establishing
key theorems, etc., at the meta-reasoning level.

In the light of this formal work, implement working
computer programs as well.

Boost performance of implementations as needed by
clever software engineering and HPC.

Empower humans by handing over implementations.

® [f desired, provide assistance with implementations.
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In SL, w/ real-time comm w/ ATP

Fle Edit View World Tools Help & #¥ Hamnida 244,92, 110 (PG) - NCI South 1:23 PMPDT &

Hugin Rasmuson: Hello Edd, Micah, today we're going to perform an experiment.
|
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“The present account of the false belief transition is incomplete in
important ways. After all, our agent had only to choose the best of
two known models. This begs an understanding of the dynamics of
rational revision near threshold and when the space of possible
models is far larger. Further, a single formal model ought ultimately
to be applicable to many false belief tasks, and to reasoning about
mental states more generally. Several components seem necessary
to extend a particular theory of mind into such a framework
theory: a richer representation for the propositional content and
attitudes in these tasks, extension of the implicit quantifier over
trials to one over situations and people, and a broader view of the
probability distributions relating mental state variables. Each of
these is an important direction for future research.”

“Intuitive Theories of Mind: A Rational Approach to False Belief”
Goodman et al.
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Toward Mechanizing Folk Psychology:
A Formal Analysis of False-Belief Tasks

Konstantine Arkoudas & Selmer Bringsjord

Abstract. Predicting and explaining the behavier of other agents
mn terms of mental states is indispensable for everyday life. We be-
lieve 1t will be equally important for artificial agents. We present
an inference system for representing and reasoning about mental
states, and use it to provide a formal amalysis of the false-belief
task The system allows for the representation of information about
events, causation, and perceptual, doxastic, and epistemic states (vi-
sion, belief, and knowledge), mcorporating ideas from the event cal-
culus and mult-agent epistemic logic. Reasoning is performed via
cognitively plansible inference mles, and a degree of antomation is
achieved by general-purpose inference methods, alan to the demons
of blackbeard-based mmlti-agent systems. The system has been im-
plemented and is available for expenimentation.

1 Introduction

Predicting and explaining the behavicr of other people 1s indispens-
able for everyday life. The ability to ascribe mental states to others
and to reason about such mental states is pervasive and imvaluable.
All social ransactions —from engaging in commerce and negohating
to making jokes and empathizing with other people’s pain or joy—
require at least a mdimentary grasp of common-sense psychology
(CSP). Artificial agents without an ability of this sort would essen-
tially suffer from autism, and would be severely handicapped in their
interactions with humans. This could present problems not only for
artificial agents trying to interpret human behavior, but also for arti-
ficial agents trying to nterpret the behavior of cne another When a
system exhibits a complex but rational behavior and detailed kmew]-
edge of its intemal structure is not available, the best strategy for
predicting and explaining its actions might be to analyze its behav-
ior in intentional terms, ie., in terms of mental states such as beliefs
and desires (1egardless of whether the system acfuclly has genuine
mental states). Mentalistic models are hikely to be particularly apt for
agents trying to manipulate the behavior of other agents.

Any computational treatment of CSP will have to integrate action
and cognition. Agents must be able to reason about the canses and
effects of vanous events, whether they are intentional events brought
about thewr own agency or non-intenticnal physical events. More im-
portantly, they mmust be able to reason about what others believe or
know about such events. To that end, cur system combines ideas
drawn from the event caleulus and from nwlti-agent epistemic logics.
It is based on multi-sorted first-crder logic extended with subsorting,
epistemic operators for perception, belief, and kmowledgze, and mech-
anisms for reasoning about causation and action. Using subsorting,
we formally model agent actions as types of events, which enables
us to use the resources of the event calculus to represent and rea-
son about agent actions. The usual axioms of the event caleulus are

encoded as common knowledge, suggesting that people have an un-
derstandmg of the basic folk laws of causality (lnnate or acquired),
and are indeed aware that others have such an understanding.

It is important to be clear on what we hope to accomplish with the
present work. In general, any logical system or methodology capa-
ble of representing and reascning about intentional notions such as
knowledze can have at least three different uses. First, it can serve as
a tool for the specification and analysis of rational epistemic agents.
Second, in tandem with some appropriate reasoning mechanism, it
can serve as a knowledge representation framework, ie., it can be
used &y artificial agents to represent their own “mental states” —and
these of other agents —and to deliberate and act in accordance with
these states and their environment. Finally, it can be used to provide
formal models of certain mteresting phenomena. A chief intended
contnbution of our present work 15 of the third sort, namely, as a for-
mal model of false-belief attnbutions, and i particular as a descrip-
tion of the competence of an agent capable of passing a false-belief
task. It addresses guestions such as the following: What sort of prin-
ciples is it plausible to assume that an agent has to deploy m order to
be able to succeed on a false-belief task? What is the depth and com-
plexity of the required reasoning? Can such reasoning be automated,
and if so, how? These questions have not been taken up in detail m
the relevant discussions in cognitive science and the philosephy of
mind, which have been conched in overly abstract and rather vague
terms. Formal computational models such as the one we present here
can help to ground such discussions, to clanfy conceptual 1ssues, and
to begin to answer important questions in a concrete setting.

Althouzh the import of such a model 15 prmanly scientific, there
can be interesting engineering implications. For instance, if the for-
malism is sufficiently expressive and versatile, and the posited com-
putational mechamsms can be automated with reasonable efficiency,
then the system can make potential contributions to the first two areas
mentioned above. We believe that our system has such potential for
two reasons. First, the combination of epistemic constructs such as
commen knowledge and the conceptual resources of the event cal-
culus for dealing with cansation appears to afford great expressive
power, as demonstrated by our formalization. A key technical msight
belund this combination is the modelling of agent actions as events
via subsorting. Second, procedural abstraction mechanisms appear to
hold significant promise for autemation; we discuss this issue later in
more detail

The remainder of this paper 1s stmuctured as follows. The next sec-
tion gives the formal definition of our system. Section 3 represents
the false-belief task In our system, and secticn 4 presents a model of
the reasoning that 1s requured to succeed in such a task, cammed out
in a modular fashion by collaborating methods. Section 5 discusses
some related work and concludes.
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2 A calculus for representing and reasoning about
mental states

The syntactic and semantic problems that anise when one tries to use
classical logic to represent and reason about intentional notions are
well-known. Syntactically, modelling belief or knowledge relation-
ally is problematic because cne believes or knows arbitranly com-
plex propositicns, whereas the arguments of relatien symbols are
terms bwlt from constants, vanables, and function syvmbels. (The
objects of belief could be encoded by strings, but such representa-
tions are too low-level for engineenng purposes.) Semantically, the
main issue 15 the referential opacity (or intensicnality) that must be
exhibited by any operators for belief, desire, knowledge, etc. In -
tensional contexts one cannct freely substitute one coreferential term
for another. Broadly speaking, there are two ways of addressing these
1ssues. One 15 to use a modal logic, with bult-in syntactic operators
for imtentional notions. The other 1s to stick with classical logic but
distingmish between an object-language and a meta-language, repre-
senting intentional discourse at the object level. Each approach has
its own advantages and drawbacks. Sticking with classical logic has
the mmportant advantage of efficiency, in that automated deduction
systems for classical logic, such as resclution provers—which have
made impressive strides over the last decade —can be used for rea-
soning. One disadvantage of this approach is that when the object
langnage 15 first-order (includes gquantification), then netions such as
substitutions and alphabetic equivalence mmst be explicitly encoded.
Depending on the facilities provided by the meta-language, this does
not need to be overly cnerous, but it does require extra effort.

The modal-logic approach has the advantage of solving the syntac-
tic and semantics problems directly, without the need to distinguish
an object-language and a meta-language. That is the approach we
have taken in this work. The main drawback of this approach is the
difficulty of automating reasoning, since standard theorem-proving
technigues from classical logic cannot be directly employed. We have
tried to overcome this limitation here by explorng the automation
potential of methods, or derived inference miles (called factics in the
terminology of HOL [7]). Another drawback is the issue of seman-
tics. The standard semantics of modal logics are given in terms of
EKnpke structures involving possible worlds. Such semantics are very
elegant and well-understood mathematically. They are also quite -
tuitive for logics dealing with necessity or ime. However, they are
remarkably wmintitive for dexastic and epistemic logics. Not only
do they fail to shed any light on the nature of belief or kmowledgze,
but they also have a number of widely Imown counter-intnitive con-
sequences that are unacceptable for resource-bounded agents, such
as logical ommiscience (deductive closure of knowledge, knowledgze
of all tautologies, etc) and the fized-point characterization of com-
meon knowledge. These 1ssues are significant for us, given that we are
interested in telling a plausible story for how actual agents in the real
world can succeed on false-belief tasks. There have been numerous
attempts to rectify these issues [8, 4, 9, 10], but each has faced sen-
ous preblems of its own, and cutside of Kripke souetures there is no
widely accepted standard at present.

Accordingly, we have not provided a possible-werld semantics for
our system. Nete that an addificnal potential complication here is
that the semantics of the event calemlus are given in terms of cir-
cumscription, a second-order logic schema, and it 1s net obvious
how to accommodate that featmre i the setting of possible worlds.
Due to these issues, and due to space restrictions, our presentation
here 15 entirely proof-theoretic. The meanings of the varous syntac-
tic constructs —such as the knowledge operator—can be viewed as

determined by their inferential reles, as specified by the various in-
ference rules. (This can itself be regarded as a form of semantics; it is
called “concepmal-role semantics” or “functional semantics™ in the
philesophy of mind; “natural semantics™ in computer science; and
“procedural semantics” in cognitive science.)

The following is the formal specification of our system, describing
the various sorts of our universe (<), the signatures of certain built-n
function symbols ( f), and the abstract syntax of terms (t) and propo-
sitions (F). The symbol C denotes subsorting:

& == object| Agent | ActionType | Action C Event
| Moment | Boolean | Fluent
actien © Agent = ARctionType — Rction

initially : Fluent — Boolean
holds : Fluent ® Moment — Boolean

happens : Event x Moment — Boolean

f = chipped : Moment « Fluent « Moment — Boolean
imifates : Event » Fluent x Moment — Boolean
termimares 1 Event ® Fluent x Moment — Boolean
prior : Moment x Moment — Boolean

t = xT:&|e:S| fltr,.... tr)

F = t:Boolean |-F|PAQ| PV | F=20Q | FPesdq|

Fex: 5. FP|3x:5.F|&a, FP)| Kla, P |Bla, F} | C{F)

Propositions of the form Sia, P), Bie. P), and Kiz, P} should be
understood as saying that agent a sees that P is the case, believes that
P, and knows that P, respectively. Propositions of the form C(P)
assert that P 1s commenly known Sort annotations will generally
be cmutted, as they are easily deducible from the context. We write
Flx +— t] for the proposition obtained from P by replacing every
free occwrence of x by . asswung that £ 15 of a sort compatble
with the sort of the free ccowrrences in question, and taking care to
rename P as necessary to aveold vanable capture. We use the infix
notation £, < - instead of priorit,, tz).

We express the following standard amioms of the event caleulus as
commen knowledge:

[41] C{¥ f.t . imimially f) » —clipped (0, f,t) = holds( f. t))
[4z] Ci¥ e, fof1. itz . happens (e t1) A initiates(e, f,81) A
£y <t A—clippedity, f,ta) = holds(f.ta))
[Aa] Civty, fotg . clippedity, f.ta) =
[Fet. happensie t) AL < ¢ <tz Aterminatesie, f,i)])

suggesting that people have a (pessibly imnate) understanding of ba-
sic cansality principles, and are indeed aware that everybedy has
such an understanding. In addition to [A4;]—[Aa], we posmlate a
few more axioms pertaiming to what people know or believe about
caunsality. First, agents know the events that they intentionally bring
about themselves —that is part of what “action” means. In fact, this
1s commeon knowledze. The following axiom expresses this:

[44] C(¥a,d,t. happensiaction(a.d).t) =
Kia, haprensiaction(a, d), 1))

The next axicm states that it 15 comumon knewledge that if an agent
a believes that a certain fluent f holds at ¢ and he does not believe
that f has been clipped between ¢ and ', then he will also believe
that f helds at ¢

[45] C(¥a,ft, ¢t . Bie, holds(f, t)) ~Bia.t < ) A
—B(a.clippedit, f.¢")) = Bla, holds{ £,£1))
The final axiom states that if a believes that b believes that f holds
at f; and a believes that nothing has happened between £; and £2 to

change b's mind, then o will believe that b will not thank that f has
been clipped between ¢, and #5:
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senting intentional discourse at the object level. Each approach has
its own advantages and drawbacks. Sticking with classical logic has
the mmportant advantage of efficiency, in that automated deduction
systems for classical logic, such as resclution provers—which have
made impressive strides over the last decade —can be used for rea-
soning. One disadvantage of this approach is that when the object
langnage 15 first-order (includes gquantification), then netions such as
substitutions and alphabetic equivalence mmst be explicitly encoded.
Depending on the facilities provided by the meta-language, this does
not need to be overly cnerous, but it does require extra effort.

The modal-logic approach has the advantage of solving the syntac-
tic and semantics problems directly, without the need to distinguish
an object-language and a meta-language. That is the approach we
have taken in this work. The main drawback of this approach is the
difficulty of automating reasoning, since standard theorem-proving
technigues from classical logic cannot be directly employed. We have
tried to overcome this limitation here by explorng the automation
potential of methods, or derived inference miles (called factics in the
terminology of HOL [7]). Another drawback is the issue of seman-
tics. The standard semantics of modal logics are given in terms of
EKnpke structures involving possible worlds. Such semantics are very
elegant and well-understood mathematically. They are also quite -
tuitive for logics dealing with necessity or ime. However, they are
remarkably wmintitive for dexastic and epistemic logics. Not only
do they fail to shed any light on the nature of belief or kmowledgze,
but they also have a number of widely Imown counter-intnitive con-
sequences that are unacceptable for resource-bounded agents, such
as logical ommiscience (deductive closure of knowledge, knowledgze
of all tautologies, etc) and the fized-point characterization of com-
meon knowledge. These 1ssues are significant for us, given that we are
interested in telling a plausible story for how actual agents in the real
world can succeed on false-belief tasks. There have been numerous
attempts to rectify these issues [8, 4, 9, 10], but each has faced sen-
ous preblems of its own, and cutside of Kripke souetures there is no
widely accepted standard at present.

Accordingly, we have not provided a possible-werld semantics for
our system. Nete that an addificnal potential complication here is
that the semantics of the event calemlus are given in terms of cir-
cumscription, a second-order logic schema, and it 1s net obvious
how to accommodate that featmre i the setting of possible worlds.
Due to these issues, and due to space restrictions, our presentation
here 15 entirely proof-theoretic. The meanings of the varous syntac-
tic constructs —such as the knowledge operator—can be viewed as

determined by their inferential reles, as specified by the various in-
ference rules. (This can itself be regarded as a form of semantics; it is
called “concepmal-role semantics” or “functional semantics™ in the
philesophy of mind; “natural semantics™ in computer science; and
“procedural semantics” in cognitive science.)

The following is the formal specification of our system, describing
the various sorts of our universe (<), the signatures of certain built-n
function symbols ( f), and the abstract syntax of terms (t) and propo-
sitions (F). The symbol C denotes subsorting:

object | Agent | ActionType | Action C Event
Moment | Boolean | Fluent

actien © Agent = ARctionType — Rction

initially : Fluent — Boolean

holds : Fluent ® Moment — Boolean

happens : Event x Moment — Boolean

chipped : Moment « Fluent « Moment — Boolean
imifiares : Event = Fluent = Moment — Boolean
termnares : Event » Fluent = Moment — Boolean
prior : Moment x Moment — Boolean

rr & |t & fita
t:Boolean | P | PAQ|FPvQ | FP=2=Q | Pae Q|
Fex: 5. FP|3x:5.F|&a, FP)| Kla, P |Bla, F} | C{F)

Propositions of the form Sia, P), Bie. P), and Kiz, P} should be
understood as saying that agent a sees that P is the case, believes that
P, and knows that P, respectively. Propositions of the form C(P)
assert that P 1s commenly known Sort annotations will generally
be cmutted, as they are easily deducible from the context. We write
Flx +— t] for the proposition obtained from P by replacing every
free occwrence of x by . asswung that £ 15 of a sort compatble
with the sort of the free ccowrrences in question, and taking care to
rename P as necessary to aveold vanable capture. We use the infix
notation £, < - instead of priorit,, tz).

We express the following standard amioms of the event caleulus as
commen knowledge:

[41] C{¥ f.t . imimially f) » —clipped (0, f,t) = holds( f. t))
[4z] Ci¥ e, fof1. itz . happens (e t1) A initiates(e, f,81) A
£y <t A—clippedity, f,ta) = holds(f.ta))
[Aa] Civty, fotg . clippedity, f.ta) =
[Fet. happensie t) AL < ¢ <tz Aterminatesie, f,i)])

suggesting that people have a (pessibly imnate) understanding of ba-
sic cansality principles, and are indeed aware that everybedy has
such an understanding. In addition to [A4;]—[Aa], we posmlate a
few more axioms pertaiming to what people know or believe about
caunsality. First, agents know the events that they intentionally bring
about themselves —that is part of what “action” means. In fact, this
1s commeon knowledze. The following axiom expresses this:

[44] C(¥a,d,t. happensiaction(a.d).t) =
Kia, haprensiaction(a, d), 1))

The next axicm states that it 15 comumon knewledge that if an agent
a believes that a certain fluent f holds at ¢ and he does not believe
that f has been clipped between ¢ and ', then he will also believe
that f helds at ¢

[45] C(¥a,ft, ¢t . Bie, holds(f, t)) ~Bia.t < ) A
—B(a.clippedit, f.¢")) = Bla, holds{ £,£1))
The final axiom states that if a believes that b believes that f holds
at f; and a believes that nothing has happened between £; and £2 to

change b's mind, then o will believe that b will not thank that f has
been clipped between ¢, and #5:

In this approach,
ontologies are
simply pairs

I
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formalize this scenario m our caleulus. In the next section we will
present a formal explanation as to how Alice can come to acquire the
correct belief about Bob's false belief.

We introduce the sort Location and the following function sym-
bols specifically for reasoning about the false-behef task:

Places : Object x Location— ActionType
moves : Object ® Location ¥ Location — ActionType
located : Object x Location— Fluent

Intuitively, action|a, places(o,[)) signifies a’s action of placing
object o in location [, while

action{ a, moves(o, [y, I3])

15 a's action of moving object o from location {4 to location [a.
It 13 common knowle at placing o in [ imtiates the fluent

located|o, [):
[D1] C¥ a.t,0,] . immares (action(a, places(o, [)), locatzd{o [),£))

It 15 hikewise Imown that if an ebject o 1s located at [y at a fime £,
then the act of moving o from {3 to [z results in o being located at [z

[D2] C(Ya,t ol lz . holds(locared(o, [1),t) =
imifates(achion(a, moves(o, {1, lz)), located (o, 3), £))

If, in addition, the new location 15 different from the old one, the
move terminates the fivent located(o, [y )

[Da]  C¥a.t, oy, bz . holdsilocated (o, Iy ). 8) Al 2 1 =
terminares(action(a, moves{o, . la)), lecated(o, {1),£))

The following axiom captures the constraint that an object cannot
be in more than one place at ene time; this is also commen kmowl-

edge:
[£4] C(¥ o,¢, 102 . holds(located (o, [1),£) A
holds(located(o, [2), t) = I} = Iz)

We introduce three fime moments that are central to the nama-
tive of the false-belief task: beginning, departure, and refurn. The
first sigmafies the time pomt when Bob places the cookie in the cabi-
net, while depariure and refurn mark the points when he leaves and
comes back, respectively. We assume that 1t's common knowledge
that these three time points are linearly ordered in the obvious man-
ner:

[Ds] Cibeginning < departure < return).
We also introduce two distinet locations, cabinet and drawer:

[D&] Cicabinet # drawer).

Fmally, we miroduce a domain Cookie as a subsort of object,
and declare a single element of it, cookie. It 1s a given premise that,
mn the begimming Alice sees Bob place the cookie in the cabinet:

[D7] SiAlice, happensiaction(Bob, places|cookie, cabinet) ), beginning ).

4 Modeling the reasoning underlying false-belief
tasks, and automating it via abstraction

At this pomt we have enough representational and reasoning machin-
ery in place to infer the comrect conclusion from a conple of obvious
premuises. However, a monolithic denvation of the conclusion from
the premises would be unsatisfactory, as it would not give us a story
about how such reasoning can be dynamically put together. Agents
must be able to reason about the behavior of other agents efficiently.
It is not at all cbvious how efficiency can be achieved in the absence
of mechanisms for abstraction, medulanty, and reusability.

We can begin to address both issues by pursuing further the idea of
derived inference mles, and by bomrowing a page from classic work
In cogmitive science and production systems. Suppose that we had a
mechanism which enabled the denvation of net cnly sehematic n-
ference mles, such as the ones that we presented in section 2, but de-
nved inference miles allowmg for arbitrary computation and search.
We could then formmlate gemeric inference miles, capable of being
applied to an unbounded (potentially infinite) number of arbitranly
complex concrete sitnations.

Our system has a notion of method that allows for that type of
abstraction and encapsulation. Methods are denived inference rules,
not just of the schematic kind, but mcorporating arbitrary computa-
tion and search. They are thus more general than the simple if-then
rules of production systems, and more akin to the knowledge sources
(or “demons™) of blackboard systems [53]. They can be viewed as
encapsulating specialized expertise in deriving certain types of con-
clusions from certain given informaticn. They can be parameterized
over any vanables, e g., arbitrary agents or time points. In our system,
the role of the blackboard 1s played by an asscciative data structure
(shared by all methods) kmown as the assumpiion base, which is an
efficiently indexed collection of propositions that represent the col-
lective knowledge state at any given moment, including perceptual
kmowledze. The assumption base 1s capable of serving as a comnm-
mcation buffer for the vanous metheds. Finally, the control executive
15 itself a methed, which directs the reasoning process incrementally
by mveking various metheds triggered by the contents of the assump-
tion base.

We describe below three zeneral-purpose methods for reasoming
in the calculus we have presented. With these methods, the reason-
ing for the false-belief task can be performed in a handful of lines —
essentially with one invocation of each of these methods. We stress
that these methods are not ad hec or hardwired to false-belief tasks.
They are generic, and can be reused in any context that requires rea-
soming about other minds and satisfies the relevant preconditions. In
particular, the metheds do net contain or require any information spe-
cific to false-belief tasks.

o Method I This method, which we call Ady . shows that when an
agent a; sees an agent ap perform some action-type o at some
time point £, a; knows that a; knows that a; has camed out o at
t. MMy is parameterized over ai, az, o, and &

1. The starting premise is that a; sees az perform o at &

S(ay, happens{action{aa o), #)) (1)

2. Therefore, ay knows that the comresponding event has occurred
at t:

Kia1, happensiacioniaz, a ). t)) ()

This follows from the preceding premuse and [DR,].
3. From [4,] and [DR;] we obtain:

Kiagy.¥ a, ot . happens (action(a, o), t) =
Kia, happens(action(a, o), £)]) 3)

4. From (3) and [DRa] we get:
Kia1, happensiaciioniaz, o), ) =

Kiag, happens{action{aa, o), 1)) 4
5. From (4), (2), and [DR;] we get:
Kiay, K(az, happensactionag, a),t))) (%)

& Method 2: The second method, Adz, shows that when (1) it is com-
mon knowledge that a certain event e initiates a fluent f; (2) an
agent a, kmews that an agent a; kmows that e has happened at a

Methods would
seem to be key for
general intelligence.
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Abstract. Wa presant an eneoding of a saquent caleulus for a mlti-
agant epistemie logic in Athena, an interactive theco Prowving system
1 metalangage
aject language.
5 theorem proving in the multi-agent logic in s al
1= marshal the highly aflcient theoram provers
der logic that are integratad with Athena for the pur
of doing proafs in the multi-agent i, inlike modeltheoretie
ambacidin modal logics into ol al first-ordar . OUr procfs o
diraetly convartible into native epistemic 1 . Third, becs

I T propositions and agents, we got muck

proaf autcmation in the multi-ag W illustrate by developing a
tactic for solving the genermalizad version of the wiss men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Scienc

from Al domai
ral language ta negotiation and game theory in econcmics; to
systems analysis and protocol anthentication in computer seeurity |
simple—intelligent agents must be able to reason about kn
are impartant to have efficient means for performing machine r

as
st}

m recent years that have resulved n s
tiee, These approaches include tablean-baszed provers,
and translations to firs ler logic coupled with the
I'Ps). Scme repr
4],

of keveraging the tremendous implementation progress that has cceurnec

mpleta [21].

Proved-Sound Algorithm for Generating Proof-
Theoretic Solution to WMP,

we and AL Moulti-
agent epistemic . in particular, have found applications 'm felds ranging
such & robaties, planning, and metivation analysis in natu-
ributed

m zuch logics. While the validity problem for mast propositional modal logies 1=
of intractable theoretieal complexity!, several approaches have been investigated
ems that appear to work well in prac-
SAT-hased algorithms,
of resolution-based au-
mtative systems are FalT [24],

“hes (such as that of MEPASS) have the advantage

&, the validity problam for muolti-agent propesitional epistamic logic is
inplete [L8]; adding a common knowledge operator makes the problam

All our
human-
authored
proofs

machine-
checked.

Metareasoning for multi-agent epistemic logics A

K] [T
'FKalP=Q) =[KalP)=Kal(]] IN'FKalP)l=P

BEFP o [C-E]
rFC(P) T FC(F) = KalP)

[Cc| [
FFICP =0 =[CP =00 IFCP) = O(Kal F))

Fig. 2. Inference rulas for the apistamic oparators,

= 7 P Intuitively, this is a judgment stating that P follows from . We will
write P17 {or 17, P] as an abhreviation for 170 { P} The sequent calealus cthat
wi will use comsists of a collection of inference rules for deriving judgments of
the form " F P. Figure 1 shows the mferencs rules that deal with che standard
propositional connectives. This part 1= standard (eg., it is very smmilar to the
sequent caleulus of Ebbinghans et al. [15]). In addition, we have some rules
pertaining to K, and ', shown m Figure 2.

Rule [K| 1= the sequent formulation of the well-known Kripke ariom stating
that the knowledge operator distributes over conditionals, Rule [Ty | is the cor-
responding principle for the common knowledge operator. Rule [T i= the “truth
axiom™: an agemt eannct know false propositions. Rule O] is an introduetion
ruke for eommeon knowledge: if & propesition P follows from the empey set of
hypotheses, ie., il it is a tautology, then it is commonly known. This is the
common-knowledge version of the “omnizcience axiom” for single-agent knowl-
edge which saye that 7 F Ke(P) can b2 decived from @ F P We do not need to
postulate that axicm in our farmulation, sinee it Bllows from [C-1] and [O-£].
The latter says that if it & common knowledge that P then any (every] agent
knows P, whila | F] says that if it is common knowladge thae P then it 1= common
knowledge that [any] agent @ knows it. [R] is a reiteraticn rule that allows us to
capture the recursive behavior of €, which 1= usnally expressed via the so-called
“induetion axiom”

O P=E{P)=|P=C{P)]
where £ i= the shared-knowledge opsrator. Since we do not need B for our
purpnses, we omit its ermahzation and “unfold™ C via rule [H] instead.
We state a few lemimas that will come handy later:

Lemma 1 (Cut). FOFP and I, B F R then my Ui F B

Proofs Assume 0 F P oand I, B F B Then, by [=-1], we get 15 F P = B
Further, by dilution, we have I, Ui B = P and I 05 F P Hence, by
[=-E], we obtain Iy Ui Py a

The proofs of the remaining lemmas are equally simple exercises:

Metareasoning for mulki-agent apistarnic ¥
ERRL R Y N Y [Reflea], n-Ey
Ty e n fal - R [Refled, A-EY, h-Ea
ETRL T e [Heflead, n-Ey
YA R Rl Kal-~@) = KalP) 2 [K], =-E
Tt Ren RalE Q= KalF) 4, 4, Lammma 2
Pyh Ren Ral Kol P =8 5. Lemma &
ETR (A N N e T f. 1. =-
LR T Y 7. [+E|

N

at the above proofl i not entirely low-level because most steps eombine
nore inference rule applications in the mterest of brevity.

1 7. Consider any agent a and propositions P&, Define Ry and s
emema &, et Hy Py, and et 5 ClRyY for i 1,2,3. Then
Sa} B C{E]).

Let J#, = =) = P and ronsider the fallowing derivation:

5,8z, 83} F 5 [Feflenr]

5y, 80, 8} 5a [Hefier

5,8, 83} F 5y [Rafler

F{PY Q) =(-~0=F) Lamma da
5,8, Sa} RO PV Q)= [ = P)) 1, -1

8,8, Sl (PR = O = F) 5 0k, [=-E]
5y, 8a, 83} F O] = F) b, 2, |=-E]

8, 8, 83} F O = Pl =2 0K a{-0 = FP)) [

8, 8, 83} F O(K (-0 = F)) B T, |=-E]

R aKag~Q=FlaRbFQ Larmma 6

FR AR =PiAafs)=0 10, |=-I]

8,8, S} F O A K o[- = F) A H) =0 11, |C-I)

51,82, 53} O AR (-8 = P)a Hs) = C00) 12, |Cx ], [=-E]
5,5, 53} F Oy AR (-8 = P A Hy) L, &, 0, Lemma 5, |A-J]
51, &2, 53} F O 13, 1, [=-E]

|

all m = 1, it turns out that the last—(w + 11" —wise man knows he 18
. The ease af two wise men is simple. The reasoning rums essentially by
icticn. The seecnd wiss man reasons as followe:

pose | were not marked, Then w, would have seen chis, and knowing
:at keast one of s is marked, he would have inferred that he was
marked one. But wy has expressed ignorance; therefore, | must b=

Teed.

r now the ease of o = 3 wise men wy, wq, wy. After w; anmounces that
nat know that he is marked, we and ws both infer that at least cne of
marked. For if neither wy nor wy were marked, w; would have ssen this
ald have concluded—and stated—that he was the marked one, since he
hat at least one of the three is marked. At this point the puzle reduces

wo-men case: both wg and wy know that at least one of them is marked,
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Modeling Visual Reasoning

Arkoudas, K. & Bringsjord, S. (forthcoming)
“Vivid: An Al Framework for Heterogeneous
Problem Solving” Artificial Intelligence.

(Thank you DARPA and IARPA/ARDA/DTO.)
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Toward a General
Logicist Methodology
for Engineering

A deontic logic
Jormalizes a moral
code, allowing
ethicists to render
theories and dilemmas
in declaraiive form for
analysis, It affers a
wary for human
DVEFSeers o consirain
robot behavior in
eilrically sensitive

ERViroR e s,

38

Ethica
Robots

Correct

Selmer Bringsjord, Konstanfine Arkoudas, and Paal Bells,

Rensselaer Polvtechnic Institute

sintelligent machines assume an increasingly prominent role in our lives, there

seems little doubt they will eventually be called on to make important, ethically

charged decisions. For example, we expect hospitals to deploy robots that can adminis-

ler medications, carry oul tests, perform surgery, and so on, supported by software agents,

or softhols, that will manage related data. (Oor dis-
cussion of ethical robots extends 1o all artificial
agents, embodied ornot. ) Consider also that robols
are already finding their way o the battlefield, where
many of their potential acticns could inflict harm that
is ethically impenmissible.

Hemw can we ensure that such mbots will always
behave in an ethically comect manner? How can we
know ahead of tme, via rationales expressed in clear
natural languages, that theit behavior will be con-
strained specifically by the ethical codes affirmed by
human cverseers? Pessimists have claimed that the
answer b these questions is: “Wecan't!” For exam-
ple, Sun Micmsysiems” colounder and former chief
soientist, Bill Toy, published a highly influential argu-
ment for this answer.! nevitably, acoording (o the
pessimists, AL will produce robots that have tremen-
dous power and behave immorally. These predictions
certainly have some traction, particularly among a
public that pays good money o see such dark films
as Stanley Kubrick's 20007 and his joint venture with
Stephen Spielherg, Al

Mometheless, we're oplimists: we think formal logic
aiffers a way 1o preciude doomesday scenarios of mali-
ciots robols faking over the word. Faced with the clal-
lemge of engineering ethically comrect robals, we pro-
pose a logic-hasad approach i see the related sidebar).
We've successfully implemented and demonsirated
thi= approach * We pre=ent it here in a general method-

1541-167206420.00 © 2006 IEEE
Pablisied by fhe JEEGE Compater Socty

ology to answer the ethical questions that arise in
entrusting robols with more and more of our wel fare.

Desntic logics:
Formalizing ethical codes

Our answer o the gquestions of how to ensume eth-
ically comect robot behawvior is, in brief, to insist that
robols only perform actions that can be proved eth-
ically permissible in a human-selected aeonic lopic.
Acdeontic logic Fformalizes an ethical code—that is,
A oollection of ethical mules and principles. Ismac Asi-
mevy introduced a simple (bat subtle) ethical oode in
his famous Three Laws of Robotics:

1. A robot may not lamm a buman being, or, through
inacticn, allow a human being o come 1o harm.

2. A robol must obey the orders given Lo it by
human beings, except where such orders would
conflict with the First Law.

3. Arobot must profect ils own existence, as long
as such protection does not conflict with the
First or Second Law.

Human beings often view ethical theores, princi-
ples, and codes informally, but intelligent machines
rejuire a greater degpee of precision. Al present, and for
the foreseeable Future, machines can’t work directly
wilh nalural language, so we can't simply fesd Asi-
mew s three laws o a mbot and instmet it behave in

IEEE INTELLIGENT 5YSTEMS
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