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Abstract 

Animals display exceptionally robust recognition abilities to 
analyze scenes compared to artificial means.  The prevailing 
hypothesis in both the neuroscience and AI literatures is that 
the brain recognizes its environment using optimized 
connections.  These connections are determined through a 
gradual update of weights mediated by learning.  The 
training and test distributions can be constrained to be 
similar so weights can be optimized for any arbitrary 
pattern.  Thus both fields fit a mathematical-statistical 
framework that is well defined and elegant.   
Despite its prevalence in the literature, it remains difficult to 
find strong experimental support for this mechanism within 
neuroscience.  Furthermore this approach is not ideally 
optimized for novel combinations of previously learned 
patterns which typically form a scene.  It may require an 
exponential amount of training data to achieve good 
precision.    
The purpose of paper is to 1) review the difficulties 
associated with this approach in both neuroscience 
experiments and AI scenarios.  2) Direct the reader towards 
‘less elegant’ mathematically-difficult inherently nonlinear 
methods that also address both literatures (better optimized 
for scenes and emulating experiments) but perform 
recognition without optimized weight parameters. 

Introduction 

Though modern day studies reveal important information 
about the brain, for example, which regions of the brain 
become active, the underlying circuits are still unknown. 
The unparalleled robustness of brain processing serves as a 
motivation for AI.  Hebb’s seminal work led to the phrase 
‘what fires together wires together’.   Since then, the 
predominant hypothesis is that the brain performs 
computations based on optimized connections determined 
by learning-dependent synaptic plasticity.  It hypothesizes 
small incremental and distributed changes in the networks 
during learning of connection weights.  The networks are 
not dependent on single individual connections and as a 
biological model are resistant to injury of single units.   
Moreover, the networks can learn any arbitrary function as 
long as the training distribution is similar to the test 
distribution.  This requirement also facilitates probabilistic 
analysis, tying into probability theory and well-defined 
mathematical analysis.    This approach elegantly connects 
neuroscience, probability theory and a practical ability to 
learn any arbitrary pattern.  Subsequently it is the 
fundamental building block for the fields of machine 
learning and AI. 

Searching Under the Streetlight 
Despite the elegance of this mechanism, two problems 
persist:  1) The AI methods do not seem to scale to brain 
function.  2) Synaptic plasticity mechanisms are still 
mysterious after over a half-century of experiments.      
Neuroscience. Synaptic plasticity in the context of 
learning is the most studied phenomenon in neuroscience.  
A search in the Pubmed database reveals 13,000 
publications.   
Synaptic plasticity is assumed to occur whenever a long-
lasting change in communication between two neurons 
occurs as a consequence of stimulating them 
simultaneously. The changes are labeled Long Term 
Potentiation (LTP) or Long Term Depression (LTD), if the 
responses increase or decrease respectively. 
Understanding these experiments’ motivation and design 
enables the understanding of the variability of results. 
In the simplest scenario, two electrodes are introduced into 
two neurons within brain tissue and activation of one 
electrode (neuron) will cause a response in the other (note: 
electrodes may be placed in numerous neurons before an 
appropriate pair is found).  In these experiments, the 
electrode that is used to stimulate a response is the input 
electrode and the electrode that records the response is the 
output electrode.   Once this configuration is found, an 
activation protocol is followed.  Stimulation of the input 
electrode is adjusted until the output neuron fires 50% of 
the time.  The electrical settings of the input electrode that 
satisfy this characteristic are labeled as the Amplitude of 
50% (A50). 
 ‘Synaptic change’ is induced by stimulating the electrodes 
simultaneously and in rapid succession.  After induction is 
complete, A50 is applied again to the input and any changes 
in the output electrode are observed.  If the output activity 
is greater than the original 50% then LTP occurred.  If the 
output activity is less than 50% then LTD occurred.  These 
changes can last for hours or days (as long as the 
experimental preparation is viable). 
A problem with this experimental design is that the high-
frequency stimulation of Long Term Potentiation induction 
can affect many neurons, yet their contribution to the LTP 
phenomena is rarely considered.  The synaptic plasticity 
hypothesis assumes that the only important interaction is 
between the input and output neurons. However this is 
highly variable suggesting a multi-cell mechanism.  In 
experiments in brain regions that involve sensory 
processing, memory and logic, there are always more 
neurons present than a single input and output neuron. 



Thus it is not surprising that it is difficult to determine 
under what induction patterns LTP occurs and under what 
induction patterns LTD occurs. Some studies find that if 
the input electrode spikes are activated within tens of 
milliseconds before the output electrode spikes, LTP is 
induced.  The reversed order of firing results in LTD.  In 
other studies, the electrode of the first spike or the last 
spike can determine the LTP or LTD and their magnitude.  
Yet other studies show that modification is frequency 
dependent.  High-frequency bursts of spikes lead to LTP, 
regardless of the relative input-output electrode timing.  
Even other studies show that spikes are not necessary for 
the induction of LTP and LTD (Froemke, Tsay et al. 
2006).  Furthermore, these properties may change during 
development. Thus the criteria just to induce LTP or LTD 
are unclear.  
In summary, reliable activity-dependent plasticity relations 
have not been determined in sensory regions, let alone 
more complex learning algorithms.  Clearly, robust 
learning occurs in the brain.  However learning rules that 
are based on connection weights and able to learn any 
arbitrary pattern may not be warranted biologically or even 
beneficial functionally.       
AI. Learning algorithms require the training distribution 
and the test distribution to be the same.  This limits AI 
because the distribution is violated in the natural 
environment such as a scene with many patterns.  If a 
network is trained on pattern A and B separately and they 
are presented side-by-side simultaneously, this is outside 
the training distribution.  Because of distribution limits, 
every pair of patterns possible (or triplets, quadruplets, 
etc.) must be trained.  This type of problem is inescapable 
because it occurs with objects embedded within other 
objects (another common natural occurrence). This 
combinatorial explosion of training is long known as the 
‘superposition catastrophe problem’ (Rosenblatt 1962; 
Rachkovskij and Kussul 2001).  This problem is mostly 
due to the fundamental distribution assumptions in learning 
and has important implications for robustness.  Thus, in 
order to implement AGI training requirements should be 
relaxed, and alternatives to connection parameter 
optimization explored. AGI algorithms should make 
intelligent structured inference onto different distributions.  

Steps Forward 
An example of a network that is less elegant in terms of 
solvability, but more powerful in handling situations 
outside of its training distribution is a self-regulatory 
feedback network (Achler, Omar et al. 2008).   
This method was deduced from biological studies showing 
an overwhelming preponderance of feedback inhibition.  
Self-regulatory feedback, inhibitory feedback from outputs 
back to inputs (also known as pre-synaptic inhibition in 
neuroscience and negative feedback in engineering) are 
found in same numbers as feed-forward connections in the 
brain, especially in sensory processing regions.   
Its functional characteristics are difficult to derive 
analytically (such connections are inherently nonlinear) but 

are better optimized for novel combinations of previously 
learned patterns, scenes (Achler, Omar et al. 2008). 
Though connections are determined by supervised 
learning, they are not trained in a conventional sense (i.e. 
through parameter optimization) since there are no 
connection weights to optimize.   
However, this network implements a surprisingly robust 
multiclass classifier that can process simultaneous patterns 
(Achler, Omar et al. 2008) addressing the superposition 
catastrophe problem.  Furthermore the networks make 
complex recognition decisions based on distributed 
processing (Achler and Amir 2008) addressing components 
of the binding problem.  This structure requires minimal 
resources (less parameters) and training. 
As importantly, given the scenario of an LTP experiment, 
the network behaves in a similar manner to that predicted 
by activity-dependent synaptic plasticity.  However, no 
connection changes are needed (Achler 2008).  This 
approach demonstrates that by relaxing training and 
distribution requirements there may be more benefits than 
difficulties.  

Conclusion 

To move forward towards AGI and better understanding of 
brain circuits, researchers must be willing to trade elegant 
mathematics for nonlinear methods that are difficult to 
solve, but function beyond the distribution limits. 
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