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Abstract

General purpose intelligent learning agents cycle through
(complex,non-MDP) sequences of observations, actions, and
rewards. On the other hand, reinforcement learning is well-
developed for small finite state Markov Decision Processes
(MDPs). So far it is an art performed by human designers to
extract the right state representation out of the bare observa-
tions, i.e. to reduce the agent setup to the MDP framework.
Before we can think of mechanizing this search for suitable
MDPs, we need a formal objective criterion. The main con-
tribution of this article is to develop such a criterion. I also
integrate the various parts into one learning algorithm. Ex-
tensions to more realistic dynamic Bayesian networks are de-
veloped in the companion article [Hut09].

Introduction
Background & motivation. Artificial General Intelligence
(AGI) is concerned with designing agents that perform well
in a wide range of environments [GP07; LH07]. Among
the well-established “narrow” AI approaches, arguably Re-
inforcement Learning (RL) pursues most directly the same
goal. RL considers the general agent-environment setup in
which an agent interacts with an environment (acts and ob-
serves in cycles) and receives (occasional) rewards. The
agent’s objective is to collect as much reward as possible.
Most if not all AI problems can be formulated in this frame-
work.

The simplest interesting environmental class consists of
finite state fully observable Markov Decision Processes
(MDPs) [Put94; SB98], which is reasonably well under-
stood. Extensions to continuous states with (non)linear
function approximation [SB98; Gor99], partial observability
(POMDP) [KLC98; RPPCd08], structured MDPs (DBNs)
[SDL07], and others have been considered, but the algo-
rithms are much more brittle.

In any case, a lot of work is still left to the designer,
namely to extract the right state representation (“features”)
out of the bare observations. Even if potentially useful rep-
resentations have been found, it is usually not clear which
one will turn out to be better, except in situations where
we already know a perfect model. Think of a mobile robot
equipped with a camera plunged into an unknown environ-
ment. While we can imagine which image features are po-

tentially useful, we cannot know which ones will actually be
useful.
Main contribution. Before we can think of mechanically
searching for the “best” MDP representation, we need a for-
mal objective criterion. Obviously, at any point in time, if we
want the criterion to be effective it can only depend on the
agents past experience. The main contribution of this article
is to develop such a criterion. Reality is a non-ergodic par-
tially observable uncertain unknown environment in which
acquiring experience can be expensive. So we want/need to
exploit the data (past experience) at hand optimally, cannot
generate virtual samples since the model is not given (need
to be learned itself), and there is no reset-option. In regres-
sion and classification, penalized maximum likelihood cri-
teria [HTF01, Chp.7] have successfully been used for semi-
parametric model selection. It is far from obvious how to
apply them in RL. Ultimately we do not care about the obser-
vations but the rewards. The rewards depend on the states,
but the states are arbitrary in the sense that they are model-
dependent functions of the data. Indeed, our derived Cost
function cannot be interpreted as a usual model+data code
length.
Relation to other work. As partly detailed later, the sug-
gested ΦMDP model could be regarded as a scaled-down
practical instantiation of AIXI [Hut05; Hut07], as a way to
side-step the open problem of learning POMDPs, as extend-
ing the idea of state-aggregation from planning (based on bi-
simulation metrics [GDG03]) to RL (based on code length),
as generalizing U-Tree [McC96] to arbitrary features, or as
an alternative to PSRs [SLJ+03] for which proper learning
algorithms have yet to be developed.
Notation. Throughout this article, log denotes the binary
logarithm, ε the empty string, and δx,y =δxy =1 if x=y and
0 else is the Kronecker symbol. I generally omit separat-
ing commas if no confusion arises, in particular in indices.
For any x of suitable type (string,vector,set), I define string
x = x1:l = x1...xl, sum x+ =

∑
jxj , union x∗ =

⋃
jxj , and

vector x• = (x1,...,xl), where j ranges over the full range
{1,...,l} and l = |x| is the length or dimension or size of x.
x̂ denotes an estimate of x. P(·) denotes a probability over
states and rewards or parts thereof. I do not distinguish be-
tween random variables X and realizations x, and abbrevia-
tion P(x):=P[X=x] never leads to confusion. More specif-
ically, m ∈ IN denotes the number of states, i ∈ {1,...,m}



any state index, n∈IN the current time, and t∈{1,...,n} any
time. Further, due to space constraints at several places I
gloss over initial conditions or special cases where inessen-
tial. Also 0∗undefined=0∗infinity:=0.

Feature Markov Decision Process (ΦMDP)
This section describes our formal setup. It consists
of the agent-environment framework and maps Φ from
observation-action-reward histories to MDP states. I call
this arrangement “Feature MDP” or short ΦMDP.
Agent-environment setup. I consider the standard agent-
environment setup [RN03] in which an Agent interacts with
an Environment. The agent can choose from actions a∈A
(e.g. limb movements) and the environment provides (reg-
ular) observations o ∈ O (e.g. camera images) and real-
valued rewards r ∈ R ⊆ IR to the agent. The reward
may be very scarce, e.g. just +1 (-1) for winning (losing)
a chess game, and 0 at all other times [Hut05, Sec.6.3].
This happens in cycles t = 1,2,3,...: At time t, after ob-
serving ot, the agent takes action at based on history ht :=
o1a1r1...ot−1at−1rt−1ot. Thereafter, the agent receives re-
ward rt. Then the next cycle t+1 starts. The agent’s ob-
jective is to maximize his long-term reward. Without much
loss of generality, I assume that A, O, and R are finite. Im-
plicitly I assume A to be small, while O may be huge.

The agent and environment may be viewed as a pair or
triple of interlocking functions of the history H :=(O×A×
R)∗×O:

Env : H×A×R ; O, on = Env(hn−1an−1rn−1),
Agent : H ; A, an = Agent(hn),

Env : H×A ; R, rn = Env(hnan).

where ; indicates that mappings → might be stochastic.
The goal of AI is to design agents that achieve high (ex-

pected) reward over the agent’s lifetime.
(Un)known environments. For known Env(), finding the
reward maximizing agent is a well-defined and formally
solvable problem [Hut05, Chp.4], with computational effi-
ciency being the “only” matter of concern. For most real-
world AI problems Env() is at best partially known.

Narrow AI considers the case where function Env() is ei-
ther known (like in blocks world), or essentially known (like
in chess, where one can safely model the opponent as a per-
fect minimax player), or Env() belongs to a relatively small
class of environments (e.g. traffic control).

The goal of AGI is to design agents that perform well in
a large range of environments [LH07], i.e. achieve high re-
ward over their lifetime with as little as possible assumptions
about Env(). A minimal necessary assumption is that the en-
vironment possesses some structure or pattern.

From real-life experience (and from the examples below)
we know that usually we do not need to know the complete
history of events in order to determine (sufficiently well)
what will happen next and to be able to perform well. Let
Φ(h) be such a “useful” summary of history h.
Examples. In full-information games (like chess) with
static opponent, it is sufficient to know the current state
of the game (board configuration) to play well (the history

plays no role), hence Φ(ht) = ot is a sufficient summary
(Markov condition). Classical physics is essentially pre-
dictable from position and velocity of objects at a single
time, or equivalently from the locations at two consecutive
times, hence Φ(ht) = otot−1 is a sufficient summary (2nd
order Markov). For i.i.d. processes of unknown probabil-
ity (e.g. clinical trials ' Bandits), the frequency of obser-
vations Φ(hn)= (

∑n
t=1δoto)o∈O is a sufficient statistic. In

a POMDP planning problem, the so-called belief vector at
time t can be written down explicitly as some function of the
complete history ht (by integrating out the hidden states).
Φ(ht) could be chosen as (a discretized version of) this be-
lief vector, showing that ΦMDP generalizes POMDPs. Ob-
viously, the identity Φ(h) = h is always sufficient but not
very useful, since Env() as a function of H is hard to impos-
sible to “learn”.

This suggests to look for Φ with small codomain, which
allow to learn/estimate/approximate Env by Ênv such that
ot≈ Ênv(Φ(ht−1)) for t=1...n.
Example. Consider a robot equipped with a camera, i.e. o is
a pixel image. Computer vision algorithms usually extract a
set of features from ot−1 (or ht−1), from low-level patterns
to high-level objects with their spatial relation. Neither is
it possible nor necessary to make a precise prediction of ot

from summary Φ(ht−1). An approximate prediction must
and will do. The difficulty is that the similarity measure “≈”
needs to be context dependent. Minor image nuances are
irrelevant when driving a car, but when buying a painting it
makes a huge difference in price whether it’s an original or a
copy. Essentially only a bijection Φ would be able to extract
all potentially interesting features, but such a Φ defeats its
original purpose.
From histories to states. It is of utmost importance to prop-
erly formalize the meaning of “≈” in a general, domain-
independent way. Let st := Φ(ht) summarize all relevant
information in history ht. I call s a state or feature (vector)
of h. “Relevant” means that the future is predictable from
st (and at) alone, and that the relevant future is coded in
st+1st+2.... So we pass from the complete (and known) his-
tory o1a1r1...onanrn to a “compressed” history sar1:n ≡
s1a1r1...snanrn and seek Φ such that st+1 is (approxi-
mately a stochastic) function of st (and at). Since the goal
of the agent is to maximize his rewards, the rewards rt are
always relevant, so they (have to) stay untouched (this will
become clearer below).
The ΦMDP. The structure derived above is a classical
Markov Decision Process (MDP), but the primary question
I ask is not the usual one of finding the value function or
best action or comparing different models of a given state
sequence. I ask how well can the state-action-reward se-
quence generated by Φ be modeled as an MDP compared to
other sequences resulting from different Φ.

ΦMDP Coding and Evaluation
I first review optimal codes and model selection methods for
i.i.d. sequences, subsequently adapt them to our situation,
and show that they are suitable in our context. I state my
Cost function for Φ and the Φ selection principle.



I.i.d. processes. Consider i.i.d. x1...xn ∈ Xn for finite
X = {1,...,m}. For known θi = P[xt = i] we have
P(x1:n|θ) = θx1 ·...·θxn . It is well-known that there exists
a code (e.g. arithmetic or Shannon-Fano) for x1:n of length
−logP(x1:n|θ), which is asymptotically optimal with prob-
ability one.

For unknown θ we may use a frequency estimate θ̂i =
ni/n, where ni = |{t : xt = i}|. Then −logP(x1:n|θ̂) =
n H(θ̂), where H(θ̂) := −

∑m
i=1θ̂ilogθ̂i is the Entropy of

θ̂ (0log0 := 0=: 0log 0
0 ). We also need to code (ni), which

naively needs logn bits for each i. One can show that it is
sufficient to code each θ̂i to accuracy O(1/

√
n), which re-

quires only 1
2 logn+O(1) bits each. Hence the overall code

length of x1:n for unknown frequencies is

CL(x1:n) = CL(n) := n H(n/n) + m′−1
2 log n (1)

for n > 0 and 0 else, where n = (n1,...,nm) and n = n+ =
n1+...+nm and m′=|{i:ni>0}|≤m is the number of non-
empty categories. The code is optimal (within +O(1)) for
all i.i.d. sources. It can be rigorously derived from many
principles: MDL, MML, combinatorial, incremental, and
Bayesian [Grü07].

In the following I will ignore the O(1) terms and refer to
(1) simply as the code length. Note that x1:n is coded ex-
actly (lossless). Similarly (see MDP below) sampling mod-
els more complex than i.i.d. may be considered, and the one
that leads to the shortest code is selected as the best model
[Grü07].
MDP definitions. Recall that a sequence sar1:n is said to
be sampled from an MDP (S,A,T,R) iff the probability of
st only depends on st−1 and at−1; and rt only on st−1,
at−1, and st. That is, P(st|ht−1at−1)=P(st|st−1,at−1)=:
T

at−1
st−1st and P(rt|ht) = P(rt|st−1,at−1,st) =: Rat−1rt

st−1st . For
simplicity of exposition I assume a deterministic depen-
dence of rt on st only, i.e. rt = Rst . In our case, we
can identify the state-space S with the states s1,...,sn “ob-
served” so far. Hence S={s1,...,sm} is finite and typically
m� n, i.e. states repeat. Let s

a→ s′(r′) be shorthand for
“action a in state s resulted in state s′ (reward r′)”. Let
T ar′

ss′ := {t≤ n : st−1 = s,at−1 = a,st = s′,rt = r′} be the
set of times t−1 at which s

a→ s′r′, and nar′

ss′ := |T ar′

ss′ | their
number (n++

++ =n).
Coding MDP sequences. For some fixed s and a, con-
sider the subsequence st1 ...stn′ of states reached from s via
a (s a→ sti), i.e. {t1,...,tn′} = T a∗

s∗ , where n′ = na+
s+ . By

definition of an MDP, this sequence is i.i.d. with s′ occur-
ring n′s′ :=na+

ss′ times. By (1) we can code this sequence in
CL(n′) bits. The whole sequence s1:n consists of |S×A|
i.i.d. sequences, one for each (s,a) ∈ S×A. We can join
their codes and get a total code length

CL(s1:n|a1:n) =
∑

s,a
CL(na+

s• ) (2)

Similarly to the states we code the rewards. There are dif-
ferent “standard” reward models. I consider only the sim-
plest case of a small discrete reward set R like {0,1} or
{−1,0,+1} here and defer generalizations to IR and a dis-
cussion of variants to the ΦDBN model [Hut09]. By the

MDP assumption, for each state s′, the rewards at times T +∗
+s′

are i.i.d. Hence they can be coded in

CL(r1:n|s1:n, a1:n) =
∑

s′
CL(n+•

+s′) (3)

bits. I have been careful to assign zero code length to non-
occurring transitions s

a→s′r′ so that large but sparse MDPs
don’t get penalized too much.
Reward↔state trade-off. Note that the code for r depends
on s. Indeed we may interpret the construction as follows:
Ultimately we/the agent cares about the reward, so we want
to measure how well we can predict the rewards, which we
do with(3). But this code depends on s, so we need a code
for s too, which is (2). To see that we need both parts con-
sider two extremes.

A simplistic state transition model (small |S|) results in
a short code for s. For instance, for |S|=1, nothing needs
to be coded and (2) is identically zero. But this obscures
potential structure in the reward sequence, leading to a long
code for r.

On the other hand, the more detailed the state transition
model (large |S|) the easier it is to predict and hence com-
press r. But a large model is hard to learn, i.e. the code for
s will be large. For instance for Φ(h) = h, no state repeats
and the frequency-based coding breaks down.
Φ selection principle. Let us define the Cost of Φ:H→S
on hn as the length of the ΦMDP code for sr given a:

Cost(Φ|hn) := CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n),(4)
where st = Φ(ht) and ht = oar1:t−1ot

The discussion above suggests that the minimum of the joint
code length, i.e. the Cost, is attained for a Φ that keeps all
and only relevant information for predicting rewards. Such
a Φ may be regarded as best explaining the rewards. So we
are looking for a Φ of minimal cost:

Φbest := arg min
Φ
{Cost(Φ|hn)} (5)

The state sequence generated by Φbest (or approximations
thereof) will usually only be approximately MDP. While
Cost(Φ|h) is an optimal code only for MDP sequences, it
still yields good codes for approximate MDP sequences.
Indeed, Φbest balances closeness to MDP with simplic-
ity. The primary purpose of the simplicity bias is not
computational tractability, but generalization ability [LH07;
Hut05].

A Tiny Example
The purpose of the tiny example in this section is to provide
enough insight into how and why ΦMDP works to convince
the reader that our Φ selection principle is reasonable. Con-
sider binary observation spaceO={0,1}, quaternary reward
space R= {0,1,2,3}, and a single action A= {0}. Obser-
vations ot are independent fair coin flips, i.e. Bernoulli( 1

2 ),
and reward rt = 2ot−1+ot a deterministic function of the
two most recent observations.
Considered features. As features Φ I consider Φk :H→Ok

with Φk(ht)=ot−k+1...ot for various k=0,1,2,... which re-
gard the last k observations as “relevant”. Intuitively Φ2



is the best observation summary, which I confirm below.
The state space S = {0,1}k (for sufficiently large n). The
ΦMDPs for k=0,1,2 are as follows.

Φ0MDP

���
ε

r=0|1|2|3

��
?

Φ1MDP

���
0

r=0|2

��
?

-� ���
1

r=1|3

��
?

Φ2MDP���
00

r=0

��-
���
11

r=3���

���
01 r=1

���
10r=2

-

?
�

6 ���
��	

Φ2MDP with all non-zero transition probabilities being
50% is an exact representation of our data source. The miss-
ing arrow (directions) are due to the fact that s=ot−1ot can
only lead to s′=o′to

′
t+1 for which o′t =ot. Note that ΦMDP

does not “know” this and has to learn the (non)zero transi-
tion probabilities. Each state has two successor states with
equal probability, hence generates (see previous paragraph)
a Bernoulli( 1

2 ) state subsequence and a constant reward se-
quence, since the reward can be computed from the state =
last two observations. Asymptotically, all four states occur
equally often, hence the sequences have approximately the
same length n/4.

In general, if s (and similarly r) consists of x∈ IN i.i.d.
subsequences of equal length n/x over y∈ IN symbols, the
code length (2) (and similarly (3)) is

CL(s|a;xy) = n log y + x |S|−1
2 log n

x ,

CL(r|s,a;xy) = n log y + x |R|−1
2 log n

x

where the extra argument xy just indicates the sequence
property. So for Φ2MDP we get
CL(s|a; 42) = n + 6log n

4 and CL(r|s,a; 41) = 6 log n
4

The log-terms reflect the required memory to code (or the
time to learn) the MDP structure and probabilities. Since
each state has only 2 realized/possible successors, we need n
bits to code the state sequence. The reward is a deterministic
function of the state, hence needs no memory to code given
s.
The Φ0MDP throws away all observations (left figure
above), hence CL(s|a;11) = 0. While the reward sequence
is not i.i.d. (e.g. rt+1 =3 cannot follow rt =0), Φ0MDP has
no choice regarding them as i.i.d., resulting in CL(s|a;14)=
2n+ 3

2 logn.
The Φ1MDP model is an interesting compromise (middle
figure above). The state allows a partial prediction of the
reward: State 0 allows rewards 0 and 2; state 1 allows re-
wards 1 and 3. Each of the two states creates a Bernoulli( 1

2 )
state successor subsequence and a binary reward sequence,
wrongly presumed to be Bernoulli( 1

2 ). Hence CL(s|a;22)=
n+logn

2 and CL(r|s,a;22)=n+3logn
2 .

Summary. The following table summarizes the results for
general k=0,1,2 and beyond:

Cost(Φ0|h) Cost(Φ1|h) Cost(Φ2|h) Cost(Φk≥2|h)
2n+ 3

2 logn 2n+4logn
2 n+12logn

4 n+ 2k+2
21−k logn

2k

For large n, Φ2 results in the shortest code, as anticipated.
The “approximate” model Φ1 is just not good enough to beat
the vacuous model Φ0, but in more realistic examples some
approximate model usually has the shortest code. In [Hut09]
I show on a more complex example how Φbest will store
long-term information in a POMDP environment.

Cost(Φ) Minimization
I have reduced the reinforcement learning problem to a for-
mal Φ-optimization problem. I briefly explain what we have
gained by this reduction, and provide some general informa-
tion about problem representations, stochastic search, and Φ
neighborhoods. Finally I present a simplistic but concrete
algorithm for searching context tree MDPs.
Φ search. I now discuss how to find good summaries Φ.
The introduced generic cost function Cost(Φ|hn), based on
only the known history hn, makes this a well-defined task
that is completely decoupled from the complex (ill-defined)
reinforcement learning objective. This reduction should not
be under-estimated. We can employ a wide range of opti-
mizers and do not even have to worry about overfitting. The
most challenging task is to come up with creative algorithms
proposing Φ’s.

There are many optimization methods: Most of them
are search-based: random, blind, informed, adaptive, local,
global, population based, exhaustive, heuristic, and other
search methods [AL97]. Most are or can be adapted to the
structure of the objective function, here Cost(·|hn). Some
exploit the structure more directly (e.g. gradient methods for
convex functions). Only in very simple cases can the mini-
mum be found analytically (without search).

General maps Φ can be represented by/as programs for
which variants of Levin search [Sch04; Hut05] and ge-
netic programming are the major search algorithms. Deci-
sion trees/lists/grids are also quite powerful, especially rule-
based ones in which logical expressions recursively divide
domainH into “true/false” regions [San08] that can be iden-
tified with different states.
Φ neighborhood relation. Most search algorithms require
the specification of a neighborhood relation or distance be-
tween candidate Φ. A natural “minimal” change of Φ is
splitting and merging states (state refinement and coarsen-
ing). Let Φ′ split some state sa∈S of Φ into sb,sc 6∈S

Φ′(h) :=
{

Φ(h) if Φ(h) 6= sa

sb or sc if Φ(h) = sa

where the histories in state sa are distributed among sb and
sc according to some splitting rule (e.g. randomly). The new
state space is S ′ = S\{sa}∪{sb,sc}. Similarly Φ′ merges
states sb,sc∈S into sa 6∈S if

Φ′(h) :=
{

φ(h) if Φ(h) 6= sa

sa if Φ(h) = sb or sc

where S ′=S\{sb,sc}∪{ss}. We can regard Φ′ as being a
neighbor of or similar to Φ.
Stochastic Φ search. Stochastic search is the method of
choice for high-dimensional unstructured problems. Monte
Carlo methods can actually be highly effective, despite their
simplicity [Liu02]. The general idea is to randomly choose
a neighbor Φ′ of Φ and replace Φ by Φ′ if it is better, i.e.
has smaller Cost. Even if Cost(Φ′|h) > Cost(Φ|h) we may
keep Φ′, but only with some (in the cost difference exponen-
tially) small probability. Simulated annealing is a version
which minimizes Cost(Φ|h). Apparently, Φ of small cost
are (much) more likely to occur than high cost Φ.



Context tree example. The Φk in the example of the pre-
vious section depended on the last k observations. Let us
generalize this to a context dependent variable length: Con-
sider a finite complete suffix free set of strings (= prefix
tree of reversed strings) S ⊂ O∗ as our state space (e.g.
S= {0,01,011,111} for binary O), and define ΦS(hn) := s
iff on−|s|+1:n=s∈S, i.e. s is the part of the history regarded
as relevant. State splitting and merging works as follows:
For binaryO, if history part s∈S of hn is deemed too short,
we replace s by 0s and 1s in S, i.e. S ′ =S\{s}∪{0s,1s}.
If histories 1s,0s∈S are deemed too long, we replace them
by s, i.e. S ′ = S\{0s,1s}∪{s}. Large O might be coded
binary and then treated similarly. The idea of using suffix
trees as state space is from [McC96]. For small O we have
the following simple Φ-optimizer:

ΦImprove(ΦS ,hn)
d Randomly choose a state s∈S;

Let p and q be uniform random numbers in [0,1];
if (p>1/2) then split s i.e. S′=S\{s}∪{os :o∈O}
else if {os :o∈O}⊆S
then merge them, i.e. S′=S\{os :o∈O}∪{s};
if (Cost(ΦS |hn)−Cost(ΦS′ |hn)> log(q)) then S :=S ′;

b return (ΦS);

Exploration & Exploitation
Having obtained a good estimate Φ̂ of Φbest in the previous
section, we can/must now determine a good action for our
agent. For a finite MDP with known transition probabilities,
finding the optimal action is routine. For estimated prob-
abilities we run into the infamous exploration-exploitation
problem, for which promising approximate solutions have
recently been suggested [SL08]. At the end of this section I
present the overall algorithm for our ΦMDP agent.
Optimal actions for known MDPs. For a known finite
MDP (S,A,T,R,γ), the maximal achievable (“optimal”) ex-
pected future discounted reward sum, called (Q) Value (of
action a) in state s, satisfies the following (Bellman) equa-
tions [SB98]

Q∗a
s =

∑
s′

T a
ss′ [R

a
ss′ + γV ∗

s′ ] and V ∗
s = max

a
Q∗a

s (6)

where 0<γ<1 is a discount parameter, typically close to 1.
See [Hut05, Sec.5.7] for proper choices. The equations can
be solved in polynomial time by a simple iteration process
or various other methods [Put94]. After observing on+1, the
optimal next action is

an+1 := arg max
a

Q∗a
sn+1

, where sn+1 = Φ(hn+1) (7)

Estimating the MDP. We can estimate the transition proba-
bility T by

T̂ a
ss′ :=

na+
ss′

na+
s+

if na+
s+ > 0 and 0 else. (8)

It is easy to see that the Shannon-Fano code of s1:n based
on PT̂ (s1:n|a1:n) =

∏n
t=1T̂

at−1
st−1st plus the code of the non-

zero transition probabilities T̂ a
ss′ > 0 to relevant accuracy

O(1/
√

na+
s+) has length (2), i.e. the frequency estimate (8)

is consistent with the attributed code length. The expected
reward can be estimated as

R̂a
ss′ :=

∑
r′∈R

R̂ar′

ss′ r
′, R̂ar′

ss′ :=
nar′

ss′

na+
ss′

(9)

Exploration. Simply replacing T and R in (6) and (7) by
their estimates (8) and (9) can lead to very poor behavior,
since parts of the state space may never be explored, causing
the estimates to stay poor.

Estimate T̂ improves with increasing na+
s+ , which can

(only) be ensured by trying all actions a in all states s suf-
ficiently often. But the greedy policy above has no incen-
tive to explore, which may cause the agent to perform very
poorly: The agent stays with what he believes to be opti-
mal without trying to solidify his belief. Trading off ex-
ploration versus exploitation optimally is computationally
intractable [Hut05; PVHR06; RP08] in all but extremely
simple cases (e.g. Bandits). Recently, polynomially opti-
mal algorithms (Rmax,E3,OIM) have been invented [KS98;
SL08]: An agent is more explorative if he expects a high re-
ward in the unexplored regions. We can “deceive” the agent
to believe this by adding another “absorbing” high-reward
state se to S, not in the range of Φ(h), i.e. never observed.
Henceforth, S denotes the extended state space. For instance
+ in (8) now includes se. We set

na
sse = 1, na

ses = δses, Ra
sse = Re

max (10)

for all s,a, where exploration bonus Re
max is polynomially

(in (1−γ)−1 and |S×A|) larger than maxR [SL08].
Now compute the agent’s action by (6)-(9) but for the ex-

tended S. The optimal policy p∗ tries to find a chain of ac-
tions and states that likely leads to the high reward absorbing
state se. Transition T̂ a

sse = 1/na
s+ is only “large” for small

na
s+, hence p∗ has a bias towards unexplored (state,action)

regions. It can be shown that this algorithm makes only a
polynomial number of sub-optimal actions.

The overall algorithm for our ΦMDP agent is as follows.

ΦMDP-Agent(A,R)
d Initialize Φ≡ε; S={ε}; h0 =a0 =r0 =ε;

for n=0,1,2,3,...
d Choose e.g. γ=1−1/(n+1);

Set Re
max =Polynomial((1−γ)−1,|S×A|)·maxR;

While waiting for on+1 {Φ:=ΦImprove(Φ,hn)};
Observe on+1; hn+1 =hnanrnon+1;
sn+1 :=Φ(hn+1); S :=S∪{sn+1};
Compute action an+1 from Equations (6)-(10);
Output action an+1;

b b Observe reward rn+1;

Improved Cost Function
As discussed, we ultimately only care about (modeling) the
rewards, but this endeavor required introducing and coding
states. The resulted Cost(Φ|h) function is a code length of
not only the rewards but also the “spurious” states. This
likely leads to a too strong penalty of models Φ with large
state spaces S. The proper Bayesian formulation developed
in this section allows to “integrate” out the states. This leads



to a code for the rewards only, which better trades off accu-
racy of the reward model and state space size.

For an MDP with transition and reward probabilities T a
ss′

and Rar′

ss′ , the probabilities of the state and reward sequences
are

P(s1:n|a1:n) =
n∏

t=1

T at−1
st−1st

, P(r1:n|s1:na1:n) =
n∏

t=1

Rat−1rt
st−1st

The probability of r|a can be obtained by taking the product
and marginalizing s:

PU (r1:n|a1:n) =
∑
s1:n

n∏
t=1

Uat−1rt
st−1st

=
∑
sn

[Ua0r1· · ·Uan−1rn ]s0sn

where for each a∈A and r′∈R, matrix Uar′∈IRm×m is de-
fined as [Uar′ ]ss′ ≡Uar′

ss′ :=T a
ss′R

ar′

ss′ . The right n-fold ma-
trix product can be evaluated in time O(m2n). This shows
that r given a and U can be coded in −logPU bits. The
unknown U needs to be estimated, e.g. by the relative fre-
quency Ûar′

ss′ :=nar′

ss′ /na+
s+ . The M :=m(m−1)|A|(|R|−1)

(independent) elements of Û can be coded to sufficient ac-
curacy in 1

2M logn bits. Together this leads to a code for r|a
of length

ICost(Φ|hn) := − log PÛ (r1:n|a1:n) + 1
2M log n (11)

In practice, M can and should be chosen smaller like done in
the original Cost function, where we have used a restrictive
model for R and considered only non-zero transitions in T .

Conclusion
I have developed a formal criterion for evaluating and select-
ing good “feature” maps Φ from histories to states and pre-
sented the feature reinforcement learning algorithm ΦMDP-
Agent(). The computational flow is h ; Φ̂ ; (T̂ ,R̂) ;

(V̂ ,Q̂) ; a. The algorithm can easily and significantly be
accelerated: Local search algorithms produce sequences of
“similar” Φ, which naturally suggests to compute/update
Cost(Φ|h) and the value function V incrementally. The pri-
mary purpose of this work was to introduce and explore Φ-
selection on the conveniently simple (but impractical) un-
structured finite MDPs. The results of this work set the
stage for the more powerful ΦDBN model developed in the
companion article [Hut09] based on Dynamic Bayesian Net-
works. The major open problems are to develop smart Φ
generation and smart stochastic search algorithms for Φbest,
and to determine whether minimizing (11) is the right crite-
rion.
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